WANG Ying-dang,XU Meng-ge,ZHANG Ya-juan,et al.Identification of Drought-tolerance of Soybean Germplasms from Yangtze and Huaihe River Valleys at Seedling Stage[J].Soybean Science,2017,36(05):669-678.[doi:10.11861/j.issn.1000-9841.2017.05.0669]
江淮大豆育种种质苗期耐旱性鉴定
- Title:
- Identification of Drought-tolerance of Soybean Germplasms from Yangtze and Huaihe River Valleys at Seedling Stage
- Keywords:
- Soybean; Seedling stage; Drought tolerance; Comprehensive evaluation
- 文献标志码:
- A
- 摘要:
- 江淮地区是我国大豆重要产区,季节性干旱时有发生,发掘适合本地区种植的耐旱新材料十分必要。选用210份江淮大豆育成新品种(系)及其部分亲本为材料,于2015和2016两年进行旱棚盆栽试验,以地上部干重、株高、主根长和根干重4个性状的耐旱系数为指标,通过主成分分析、隶属函数值法和聚类分析对其苗期耐旱性进行综合评价。结果表明:与正常供水相比,干旱胁迫下4个性状均显著降低,其中地上部干重、根干重、株高和主根长平均分别减小54%、42%、39%和15%;方差分析显示各性状在水分处理间和材料间均存在极显著差异,而株高和根干重性状上基因型、水分处理和年份三因子间一级互作和二级互作效应均为极显著。地上部干重与株高、根干重间以及主根长与根干重间的耐旱系数存在显著正相关,反映指标间有内在联系;主成分分析提取的前3个相互独立的主成分的累积贡献率达83.61%,能较好地替代原有4个信息部分重叠的性状;进一步获得耐旱性综合评价D值,结合聚类分析将所有材料分为强耐旱、耐旱、中度耐旱、干旱敏感、干旱强敏感5类。共鉴定出强耐旱材料5份(包括IA2077、YC4H/NN88-31//NN73-935、蒙8108、NN88-48/NN86-4和NN88-48/D76-1609)、耐旱材料57份。来自淮南和淮北地区的强耐旱或耐旱材料分别为27份(占该地区83份材料的32.53%)和19份(占该地区76份材料的25.00%)。所得结果可为大豆耐旱遗传育种提供材料。
- Abstract:
- Abstract:The Yangtze and Huaihe River Valleys (YHRV) is an important area for soybean production in China. However, seasonal drought occurs frequently in this region, thus it is very necessary to identify and screen new drought-tolerant germplasms adapting to there. In the present study, 210 accessions of soybean germplasm, including 159 new breeding lines developed from YHRV and 51 parental lines, were planted in plastic pots under water-stressed and well-watered conditions in rainproof greenhouse in both 2015 and 2016.The drought tolerance coefficients of shoot dry weight (SDW), plant height (PH), tap root length (TRL), and root dry weight (RDW) at seedling stage were used as drought tolerant indices.Principle component analysis, the subordinate function value method and cluster analysis were jointly applied for comprehensive evaluation of drought tolerance for the tested genotypes.The results showed that the four traits were significantly decreased under the water-stressed condition compared with those under the well.watered condition.The averages for SDW, RDW, PH and TRL were reduced by 54%, 42%, 39% and 15%, respectively. The analysis of variance (ANOVA) showed that there was very significant differences between the two water treatments among the tested genotypes for all the traits, moreover, the first and the second order interactions of the three factors, i-e genotype, water treatment and year, for the PH and RDW were very significant.There was significant positive correlation relationship for drought-tolerant coefficients between SDW and PH, SDW and RDW, TRL and RDW, which reflected the inherent relations among the original drought tolerant indicators.The first three independent principal components extracted from principal component analysis accounted for 83.61% of the total variability and could adequately replace the original four indices which had overlapped information.To obtain the drought tolerance comprehensive evaluation D-value, the principal component scores for all the genotypes were then standardized through subordinate function and further average with corresponding eigenvalue as weight. All accessions were divided into five classes, i.e-high drought tolerance, drought tolerance, medium drought tolerance, drought susceptibility and high drought susceptibility, using-cluster analysis-based on D-value.Five-accessions (IA2077,YC4H/NN88.31//NN73.935,M8108,NN88.48/NN86.4and NN88.48/D76.1609)were identified as high drought tolerance and 57 was identified as drought tolerance among the total samples-27 lines (32.53% out of 83 genotypes in this region) from Southern YHRV and 19 lines (25.00% out of 76 genotypes in this region) from Northern YHRV were identified as high drought tolerance or drought tolerance.The screened genotypes could be used for drought tolerance breeding in soybean.
参考文献/References:
[1]Liu Z, Li H, Fan X, et al. Phenotypic characterization and genetic dissection of nine agronomic traits in Tokachi nagaha and its derived cultivars in soybean (Glycine max(L) Merr)[J]. Plant Science, 2017, 256:72-86.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(05):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(05):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(05):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(05):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(05):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(05):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(05):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(05):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(05):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(05):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]宋晓慧,滕占林,箫长亮,等.淹水胁迫对不同耐涝性大豆品种苗期根部形态及叶部生理指标的影响[J].大豆科学,2013,32(01):130.[doi:10.3969/j.issn.1000-9841.2013.01.030]
SONG Xiao-hui,TENG Zhan-lin,XIAO Chang-liang,et al.Effect of Waterlogging on Root Morphology and Foliar Physiological Indexes of Soybean Varieties[J].Soybean Science,2013,32(05):130.[doi:10.3969/j.issn.1000-9841.2013.01.030]
[12]宋晓慧,张智杰,李春光,等.淹水时间对不同耐涝性大豆品种苗期根部形态和叶部生理指标的影响[J].大豆科学,2014,33(01):70.[doi:10.11861/j.issn.1000-9841.2014.01.0070]
SONG Xiao-hui,ZHANG Zhi-jie,LI Chun-guang,et al.Effect of Waterlogging Time on Root Morphology and Foliar Physiological Indexes of Soybean Varieties[J].Soybean Science,2014,33(05):70.[doi:10.11861/j.issn.1000-9841.2014.01.0070]
[13]郝青南,王程,陈水莲,等.大豆苗期氮高效和氮敏感资源的筛选研究[J].大豆科学,2011,30(06):910.[doi:10.11861/j.issn.1000-9841.2011.06.0910]
HAO Qing-nan,WANG Cheng,CHEN Shui-lian,et al.Screening of Soybean Varieties with Different Nitrogen Efficiency at Seedling Stage[J].Soybean Science,2011,30(05):910.[doi:10.11861/j.issn.1000-9841.2011.06.0910]
[14]王 敏,杨万明,杜维俊.苗期大豆根系及地上部性状与耐旱性的关系[J].大豆科学,2012,31(03):399.[doi:10.3969/j.issn.1000-9841.2012.03.013]
WANG Min,YANG Wan-ming,DU Wei-jun.Root and Aboveground Characteristics at Seedling and Their Relationship with Drought Tolerance in Soybean[J].Soybean Science,2012,31(05):399.[doi:10.3969/j.issn.1000-9841.2012.03.013]
[15]乔亚科,杨晓倩,乔潇,等.大豆基于形态及生理指标的抗旱性评价及相关性分析[J].大豆科学,2014,33(05):667.[doi:10.11861/j.issn.1000-9841.2014.05.0667]
QIAO Ya-ke,YANG Xiao-qian,QIAO Xiao,et al.The Correlation of Drought-Resistance Evaluation between Agronomic Traits and Physiological Indexes of Wild and Cultivated Soybean[J].Soybean Science,2014,33(05):667.[doi:10.11861/j.issn.1000-9841.2014.05.0667]
[16]臧紫薇,赵雪,李海燕,等.大豆种质资源苗期抗旱性评价[J].大豆科学,2016,35(06):964.[doi:10.11861/j.issn.1000-9841.2016.06.0964]
ZANG Zi-wei,ZHAO Xue,LI Hai-yan,et al.Evaluation of Drought Resistance of Soybean Germplasm in Seedling Stage[J].Soybean Science,2016,35(05):964.[doi:10.11861/j.issn.1000-9841.2016.06.0964]
[17]牛远,杨修艳,戴存凤,等.大豆芽期和苗期耐盐性评价指标筛选[J].大豆科学,2018,37(02):215.[doi:10.11861/j.issn.1000-9841.2018.02.0215]
NIU Yuan,YANG Xiu-yan,DAI Cun-feng,et al.Related Indices Selection of Soybean Salt Tolerance at Germination and Seedling Stages[J].Soybean Science,2018,37(05):215.[doi:10.11861/j.issn.1000-9841.2018.02.0215]
[18]何松榆,秦彬,张明聪,等.水分胁迫下外源褪黑素对大豆苗期抗氧化特性和产量的影响[J].大豆科学,2019,38(03):407.[doi:10.11861/j.issn.1000-9841.2019.03.0407]
HE Song-yu,QIN Bin,ZHANG Ming-cong,et al.Effects of Exogenous Melatonin on Antioxidant Properties and Yield of Soybean Seedling Under Water Stress[J].Soybean Science,2019,38(05):407.[doi:10.11861/j.issn.1000-9841.2019.03.0407]
[19]曲芳,陈海涛,王洪飞,等.仿生包衣装置对大豆发芽与苗期植株性状的影响[J].大豆科学,2019,38(03):455.[doi:10.11861/j.issn.1000-9841.2019.03.0455]
QU Fang,CHEN Hai-tao,WANG Hong-fei,et al.Effects of Bionic Coating Device Treatment on Soybean Germination and Plant Characters at Seedling Stage[J].Soybean Science,2019,38(05):455.[doi:10.11861/j.issn.1000-9841.2019.03.0455]
[20]刘蓓,邱爽,何佳琦,等.8个大豆Dof转录因子的生物信息学分析及干旱诱导表达[J].大豆科学,2020,39(03):377.[doi:10.11861/j.issn.1000-9841.2020.03.0377]
LIU Bei,QIU Shuang,HE Jia-qi,et al.Bioinformatics Analysis and Expression of Eight Dof Transcription Factors in Soybean Under Drought Stress[J].Soybean Science,2020,39(05):377.[doi:10.11861/j.issn.1000-9841.2020.03.0377]
备注/Memo
基金项目:国家自然科学基金(31571691);长江学者和创新团队发展计划(PCSIRT13073);江苏省现代作物生产协同创新中心项目(JCIC-MCP)