QIN Yu-tao,WANG Rui,LYU Jin-dong,et al.Transgenic Identification of Pod-shattering Gene GmAGL8 in Soybean[J].Soybean Science,2017,36(03):360-364.[doi:10.11861/j.issn.1000-9841.2017.03.0360]
大豆炸荚基因GmAGL8的转基因鉴定与功能初探
- Title:
- Transgenic Identification of Pod-shattering Gene GmAGL8 in Soybean
- Keywords:
- Soybean; Pod-shattering; GmAGL8; Transgene
- 文献标志码:
- A
- 摘要:
- 炸荚是大豆的一种自然特征属性,是影响大豆产量的重要因素之一。本研究以前期获得的转大豆炸荚相关基因GmAGL8的T1代植株为材料,继续繁育获得T2和T3代;采用PCR和RT-qPCR检测方法对转基因植株进行基因遗传稳定性和表达情况分析;并以野生型中黄10号为对照,对大豆炸荚性状进行了鉴定分析。结果表明:转基因植株阳性率T1代为87.5%,T2和T3代均达到100%,说明GmAGL8基因已基本能够在转基因后代中稳定遗传。RT-qPCR检测结果显示,转基因植株中GmAGL8基因的相对表达量都明显高于非转基因植株,且各转基因植株之间表达量具有差异性。对T1、T2和T3代植株炸荚率进行了统计,不同世代转基因大豆的平均炸荚率为9.09%,而非转基因大豆炸荚率为83.3%,转基因与非转基因大豆之间炸荚率存在显著差异。综上所述,GmAGL8基因已基本实现在大豆转基因后代中稳定遗传并正常表达,表型鉴定结果初步证明了GmAGL8基因与大豆炸荚性状相关。
- Abstract:
- Pod shattering is a natural characteristic of soybean, which is one of the critical factors influencing production. In our previous study, we had transformed the gene GmAGL8(which putative related to soybean pod-shattering) into Glycine max and obtained the T1generation.In this study, the T 2 and T3 generation were multiplied by the T 1 generation carrying the GmAGL8-gene.The genetic stability and expression of transgenic plants were analyzed by using PCR and RT-qPCR methods. As a control group, wild-type Zhonghuang 10 was used to analyze and identify the traits of soybean pods.The results showed the positive rate of the GmAGL8 gene in T1, T2 and T 3 generation were 87.5%, 100% and 100% respectively.It demonstrated that the GmAGL8 gene can be inherited stably.The results of RT-qPCR analyzing showed the relative expression amount of GmAGL8-gene in transgenic plants was significantly higher than that in non-transgenic plants, and the amounts were various among the transgenic plants. The statistical results for pod-shattering among all plants indicated that the rates of pod-shattering were different among transgenic plants and non-transgenic plants, the average rate of pod shattering among transgenic plants of all generations was 9.09%, the rate of pod shattering among non-transgenic plants was 83.3%.In conclusion, GmAGL8 gene can be inherited stably and expressed normally among transgenic soybean.Furthermore, the phenotypic identification results proved the GmAGL8 gene is related to pod-shattering.
参考文献/References:
[1]董钻.大豆产量生理[M]. 北京: 中国农业出版社, 2000: 17-18. (Dong Z.Soybean yield physiology[M]. Beijing: Agriculture Press, 2000, 17-18)
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(03):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(03):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(03):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(03):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(03):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(03):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(03):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(03):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(03):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(03):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]涂冰洁,刘晓冰,刘长锴,等.大豆炸荚特性及调控机制研究进展[J].大豆科学,2019,38(03):477.[doi:10.11861/j.issn.1000-9841.2019.03.0477]
TU Bing-jie,LIU Xiao-bing,LIU Chang-kai,et al.A Review of Pod Dehiscence Characteristics and Regulation Mechanism in Soybean[J].Soybean Science,2019,38(03):477.[doi:10.11861/j.issn.1000-9841.2019.03.0477]
备注/Memo
基金项目:国家高技术研究发展计划“863计划”(2012AA101106)。