[1]Oerke E C. Crop losses to pests[J].Journal of Agricultural Science, 2006, 144:31-43.[2]van Duyn J W, Turnipseed S G, Maxwell J D. Resistance in soybean to the Mexican bean beetle[J]. Crop Science, 1971, 11:572-573.
[3]Boethel D J.Assessment of soybean germplasm for multiple insect resistance[M]//Clement S L, Quisenbury S S. Global plant genetic resources for insect-resistant crops. Boca Raton, FL: CRC Press, 1999: 101-129.
[4]Lambert L, Tyler J. Appraisal of insect-resistant soybeans Economic[M]//Webster J A, Webster B R. Environmental, and social benefits of insect resistance in field crops.Lanham, M D: Thomas Say Publications, Entomological Society of America, 1999: 131-148.[5]Christou P, Capell T, Kohli A,et al. Recent developments and future prospects in insect pest control in transgenic crops[J].Trends in Plant Science, 2006, 11(6): 302-308.
[6]Walker D R, Boerma H R, All J N, et al.Combining -cry1Ac- with QTL alleles from PI 229358 to improve soybean resistance to lepidopteran pests[J]. Molecular Breeding, 2002, 9:43-51.
[7]Walker D R, Narvel J M, Boerma H R, et al. A QTL that enhances and broadens Bt insect resistance in soybean[J]. Theoretical and Applied Genetics, 2004, 109:1051-1057.
[8]卫剑文, 许新萍, 陈金婷, 等. 应用Bt和SBTi基因提高水稻抗虫性的研究[J]. 生物工程学报, 2000, 16(5):603-608.(Wei J W, Xu X P, Chen J P, et al. Research on improving rice resistance to the pest by Bt and SBTi genes[J]. Chinese Journal of Biotechnology, 2000, 16(5):603-608.)
[9]Rector B G, All J N, Parrott W A, et al. Identification of molecular markers linked to quantitative trait loci for soybean resistance to corn earworm[J].Theoretical and Applied Genetics, 1998, 96:786-790.
[10]Rector B G, All J N, Parrott W A, et al. Quantitative trait loci for antixenosis resistance to corn earworm in soybean[J]. Crop Science, 1999, 39: 531-538.
[11]Rector B G, All J N, Parrott W A, et al. Quantitative trait loci for antibiosis resistance to corn earworm in soybean[J]. Crop Science, 2000, 40:233-238.
[12]Narvel J M, Walker D R, Rector B G, et al. A retrospective DNA marker assessment of the development of insect resistant soybean[J]. Crop Science, 2001, 41:1931-1939.
[13]Ortega M A, All J N, Boerma H R, et al. Pyramids of QTLs enhance host-plant resistance and Bt mediated resistance to leaf chewing insects in soybean[J].Theoretical and Applied Genetics, 2016, 129:703-715.
[14]Zhu S, Walker D R, Boerma H R, et al. Effects of defoliating insect resistance QTLs and a -cry1Ac- transgene in soybean near-isogenic lines[J].Theoretical and Applied Genetics, 2008, 116:455-463.
[15]Zhu S, Walker D R, Boerma H R, et al. Fine mapping of a major insect resistance QTL in soybean and its interaction with minor resistance QTLs[J].Crop Science, 2006, 46:1094-1099.
[16]Parrott W, Walker D, Zhu S,et al. Genomics of insect-soybean interactions[M]//Stacey G. Genetics and genomics of soybean.New York: Springer Science+Business Media, LLC, 2008:269-291.
[17]Zhu S, Saski C A, Boerma H R, et al.Construction of a BAC library for a defoliating insect-resistant soybean and identification of candidate clones using a novel approach[J].Plant Molecular Biology Reporter, 2009, 27:229-235.
[18]Komatsu K, Okuda S, Takahashi M, et al. Antibiotic effect of insect-resistant soybean on common cutworm(Spodoptera litura) and its inheritance[J]. Breeding Science, 2004, 54: 27-32.
[19]Komatsu K, Okuda S, Takahashi M,et al.QTL mapping of antibiosis to common cutworm (Spodoptera litura Fabricius) in soybean[J].Crop Science, 2005, 45:2044-2048.
[20]Oki N, Komatsu K, Sayama T,et al. Genetic analysis of antixenosis resistance to the common cutworm and its relationship with pubescence characteristics in soybean[J].Breeding Science, 2012, 61: 608-617.
[21]崔章林, 盖钧镒, 吉东风, 等. 大豆种质资源对食叶性害虫抗性的鉴定[J].大豆科学, 1997, 16(2):93-102. (Cui Z L, Gai J Y, Ji D F, et al. Evaluation of soybean germplasm for resistance to leaf-feeding insects[J].Soybean Science,1997,16(2):93-102.)
[22]王慧, 喻德跃, 吴巧娟, 等.大豆对斜纹夜蛾抗生性基因的微卫星标记(SSR)的研究[J]. 大豆科学, 2004, 23(2): 91-95. (Wang H, Yu D J, Wu Q J, et al. Characterization of resistance genes to cotton cutworm with SSR markers in soybean[J]. Soybean Science, 2004, 23(2):91-95.)
[23]刘华, 王慧, 李群, 等. 大豆对斜纹夜蛾抗性的遗传分析及相关QTL的定位[J].中国农业科学, 2005, 38(7): 1369-1372.(Liu H, Wang H, Li Q, et al. Inheritance analysis and mapping QTLs related to cotton worm resistance in soybeans[J]. Scientia Agricultura Sinica, 2005, 38(7): 1369-1372.)
[24]付三雄, 王慧, 吴娟娟, 等. 应用重组自交系群体定位大豆抗虫QTL[J]. 遗传, 2007, 29(9): 1139-1143.(Fu S X, Wang H, Wu J J, et al. Mapping insect resistance QTLs of soybean with RIL population[J]. Hereditas, 2007, 29(9): 1139-1143.)
[25]Kim H, Xing G N, Wang Y F, et al.Constitution of resistance to common cutworm in terms of antibiosis and antixenosis in soybean RIL populations[J].Euphytica, 2014, 196:137-154.
[26]Thornsberry J M, Goodman M M, Doebley J, et al.Dwarf8- polymorphisms associate with variation in flowering time[J]. Nature Genetics, 2001, 28:286-289.
[27]王慧, 高中杰, 张丹, 等. 应用关联分析鉴定大豆对斜纹夜蛾的抗性基因[J].植物学报, 2011, 46(5): 514-524. (Wang H, Gao Z J, Zhang D, et al. Identification of genes with soybean resistance to common cutworm by association analysis[J]. Chinese Bulletin of Botany, 2011, 46(5):514-524.)
[28]Wang H, Yan H L, Du H P,et al. Mapping quantitative trait loci associated with soybean resistance to common cutworm and soybean compensatory growth after defoliation using SNP marker-based genome wide association analysis[J]. Molecular Breeding, 2015, 35:168.
[29]Kim H, Xing G N, He J B,et al. An environmental differential association analysis of antibiosis to common cutworm in a Chinese soybean germplasm population and optimization of the cross design[J]. Molecular Breeding, 2015, 35:76.
[30]Terry L I, Chase K, Jarvik T, et al. Soybean quantitative trait loci for resistance to insects[J]. Crop Science, 2000, 40: 375-382.[31]Terry L I, Chase K, Orf J, et al. Insect resistance in recombinant inbred soybean lines derived from non-resistant parents[J]. Entomologia Experimentalis and Applicata, 1999, 91:465-476.
[32]Wang H, Gao Z J, Liu H L,et al. Variation in GmAOS1 promoter is associated with soybean defense against insect attack[J]. Euphytica, 2014, 196:365-374.
[33]吴娟娟, 吴倩, 喻德跃.大豆丙二烯氧化物合酶基因(GmAOS)及其启动子的克隆与分析[J]. 作物学报, 2011, 37(2): 216-223.(Wu J J, Wu Q, Yu D Y. Cloning and characterization of GmAOS gene and its promoter in soybean(.Glycine max) [J].Acta Agronomica Sinica, 2011, 37(2): 216-223.)
[34]Wu J J, Wu Q, Wu Q J,et al. Constitutive overexpression of AOS-like gene from soybean enhanced tolerance to insect attack in transgenic tobacco[J]. Biotechnology Letters, 2008, 30:1693-1698.
[35]Wu Q, Wu J, Sun H, et al. Sequence and expression divergence of the AOC gene family in soybean: Insights into functional diversity for stress responses[J]. Biotechnology Letters, 2011, 33:1351-1359.
[36]Wu Q, Wang H, Wu J J,et al. Soybean GmAOC3 promotes plant resistance to the common cutworm by increasing the expression of genes involved in resistance and volatile substance emission in transgenic tobaccos[J]. Journal of Plant Biology, 2015, 58:242-251.
[37]Lorenzo O, Chico J M, Sanchez-Serrano J J, et al.JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis[J]. Plant Cell, 2004, 16:1938-1950.[38]Wang H, Ding C W, Du H P,et al.Identification of soybean MYC2-like transcription factors and overexpression of GmMYC1-could stimulate defense mechanism against common cutworm in transgenic tobacco[J]. Biotechnology Letters, 2014, 36:1881-1892.
[39]Wang Y L, Wang H, Ma Y J,et al. Identification of soybean herbivoryregulated genes and a transgenic investigation of their potential in insect resistance[J]. Plant Cell, Tissue and Organ Culture, 2015, 123: 321-340.
[40]Liu S H. Volatiles from the foliage of soybean, Glycine max, and lima bean, Phaseolus lunatus: Their behavioral effects on the insects .Trichoplusia ni and Epilachna varivestis[J]. Journal of Agricultural and Food Chemistry, 1989, 37:496-501.
[41]Michereff M F F, Laumann R A, Borges M, et al. Volatiles mediating a plant-herbivore-natural enemy interaction in resistant and susceptible soybean cultivars[J]. Journal of Chemical Ecology, 2011, 37:273-285.
[42]Winter T R, Rostás M. Nitrogen deficiency affects bottom-up cascade without disrupting indirect plant defense[J].Journal of Chemical Ecology, 2010, 36:642-651.
[43]Liu J Y, Huang F, Wang X,et al. Genome-wide analysis of terpene synthases in soybean: Functional characterization of GmTPS3[J].Gene, 2014, 544:83-92.
[44]宁爱玲, 杜海平, 喻德跃, 等.GmAOC3基因转化载体构建及转化大豆的初步研究[J].大豆科学, 2015, 34:588-596.(Ning A L, Du H P, Yu D Y, et al. Construction of transformation vector of GmAOC3 gene and preliminary study on the transformation of soybean[J]. Soybean Science, 2015, 34: 588-596.)
[45]宁爱玲.GmAOC3和GmMYC5转化大豆的初步研究[D].南京: 南京农业大学, 2014. (Ning A L.The preliminary research on transferring GmAOC3 and GmMYC5 into soybean[D]. Nanjing: Nanjing Agricultural University, 2014.)
[46]Chiang H S, Norris D M, Ciepiela A,et al. Inducible versus constitutive PI 227687 soybean resistance to Mexican bean beetle, Epilachna varivestis[J].Journal of Chemical Ecology, 1987, 13(4):741-749.
[47]Hildebrand D F, Rodriguez J G, Brown G C,et al. Peroxidative responses of leaves in two soybean genotypes injured by two spotted spider mites (Acari: Tetranychidae)[J]. Journal of Economic Entomology, 1986, 79(6):1459-1465.
[48]Lin H, Kogan M, Fischer D. Induced resistance in soybean to the Mexican bean beetle (Coleoptera: Coccinellidae): Comparisons of inducing factors[J]. Environmental Entomology, 1990, 19(6): 1852-1857.
[49]Stotz H U, Koch T, Biedermann A,et al. Evidence for regulation of resistance in .Arabidopsis to Egyptian cotton worm by salicylic and jasmonic acid signaling pathways[J].Planta, 2002, 214: 648-652.
[50]Fan R, Wang H, Wang Y L,et al. Proteomic analysis of soybean defense response induced by cotton worm (Prodenia litura, Fabricius) feeding[J]. Proteome Science, 2012, 10:16.
[51]Wang Y, Wang H, Fan R,et al.Transcriptome analysis of soybean lines reveals transcript diversity and genes involved in the response to common cutworm (Spodoptera litura Fabricius) feeding[J]. Plant, Cell & Environment, 2014, 37:2086-2101.
[52]Wang Y, Wang H, Ma Y,et al. Identification of transcriptional regulatory nodes in soybean defense networks using transient co-transactivation assays[J]. Frontiers in Plant Science, 2015, 6:915.
[53]Varshney R K, Graner A, Sorrells M E. Genomics-assisted breeding for crop improvement[J].Trends in Plant Science, 2005, 10(12): 621-630.
[54]Schmutz J, Cannon S B, Schlueter J,et al. Genome sequence of the palaeopolyploid soybean[J].Nature, 2010, 463:178-183.
[55]陈建明, 俞晓平, 程家安, 等. 植物耐虫性研究进展[J] 昆虫学报, 2005, 48(2): 262-272. (Chen J M, Yu X P, Chen J A, et al. Plant tolerance against insect pests and its mechanisms[J]. Acta Entomologica Sinica, 2005, 48(2): 262-272.)
[56]董英山. 中国野生大豆研究进展[J]. 吉林农业大学学报, 2008, 30(4): 394-400. (Dong Y S. Advances of research on wild soybean in China[J]. Journal of Jilin Agricultural University, 2008, 30(4): 394-400.)
[57]Zhou Z K, Jiang Y, Wang Z,et al. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean[J]. Nature Biotechnology, 2015, 33: 408-414.
[58]Wen Z X, Ding Y L, Zhao T J,et al. Genetic diversity and peculiarity of annual wild soybean (G soja Sieb et Zucc) from various eco.regions in China[J]. Theoretical and Applied Genetics, 2009, 119: 371-381.
[59]Wang X Y, Chen H F, Sha A H,et al. Laboratory testing and molecular analysis of the resistance of wild and cultivated soybeans to cotton bollworm, Helicoverpa armigera(Hübner)[J]. Crop Jounal, 2015, 3:19-28.
[60]Kim M Y, Lee S, Van K, et al. Whole-genome sequencing and intensive analysis of the undomesticated soybean(Glycine soja-Sieb and Zucc) genome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107:22032-22037.
[61]Li Y H, Zhou G, Ma J, et al. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits[J]. Nature Biotechnology, 2014, 32:1045-1052.
[62]Song Q J, Jenkins J, Jia G F,et al. Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1-01[J]. BMC Genomics, 2016, 17:3