WEI Lai,WU Guang-xi,TANG Xiao-fei,et al.Soybean Responses to High Temperatures Under Drought Stress in the Presence of An Over-expressed GmHSFA1 Gene[J].Soybean Science,2016,35(02):257-261.[doi:10.11861/j.issn.1000-9841.2016.02.0257]
过表达GmHSFA1大豆在干旱条件下对高温的响应
- Title:
- Soybean Responses to High Temperatures Under Drought Stress in the Presence of An Over-expressed GmHSFA1 Gene
- Keywords:
- GmHSFA1- gene; Drought and heat; Soybean
- 文献标志码:
- A
- 摘要:
- 揭示干旱条件下植物耐高温的能力,可提高品种抗干旱的潜力。在土壤水分为8%~9%干旱条件下,分别在28和48℃处理耐旱的T7代过表达GmHSFA1大豆株系,观察其形态基因表达和生理及光合指标的变化,并运用关联分析方法,筛选和确定抗干旱耐高温的大豆品系,为大豆分子遗传改良和基因聚合育种的种质材料利用奠定技术基础。结果表明:在干旱、高温条件下,过表达GmHSFA1大豆株系目的基因表达量明显增高,其中T7-27大豆的表达量增加了22倍;植株中热激蛋白的靶基因HSP70、HSP22、HSP17-9的表达量明显上调,分别增加了46,7和59倍;脯氨酸含量明显增加;丙二醛含量受高温影响,株系间增幅不同;可溶性糖含量受高温影响均明显增加,增幅最高的为T7-27株系,增幅为91%;植株净光合速率降低,但低于非转基因大豆。多种指标的灰色关联性分析表明,过表达GmHSFA1的大豆株系T7-18和T7-27的抗干旱耐热性较好。
- Abstract:
- The research on plant resistance to heat and drought conditions could help to increase plant drought resistance. By using T-7 generation overexpression GmHSFA1 soybean lines as material for this study, changes in plant morphology, gene expression, physiology and biochemistry under two temperature treatments (28℃ and 48℃) were analyzed under drought conditions with soil moistures of 8%-9%.An association analysis was used to screen the plant lines for drought and heat resistance, which laid the foundation for genetic improvement and pyramiding.The results showed that the expression of the GmHSFA1 gene in the overexpression soybean lines clearly increased under drought conditions when the temperature reached 48℃. In T-7-27, the expression increased 22 fold, and the expression of the heat shock protein genes HSP70, HSP22 and HSP17-9 clearly increased 46, 7 and 59-fold, respectively. This research confirmed that the leaf proline content increased and that the malondialdehyde (MDA) content was affected by high temperature and different amplification in different lines. The soluble sugar content clearly increased in response to heat, and T-7-27 exhibited the greatest increase of up to 91%. Heat also clearly changed the photosynthesis rate. Under drought conditions and temperatures of up to 48℃, the transgenic soybean photosynthetic rate decreased, but the decreasing amplitude was less than that of non-transgenic soybean lines.According to a gray-related correlation analysis of multiple indicators, the overexpression GmHSFA1 soybean lines T-7-18 and T-7-27 had the best resistance to drought and heat.
参考文献/References:
[1]崔维佳,常志云,李宁,等. 干旱胁迫对大豆生理生态及产量的影响[J].水资源与水工程学报,2013,24(4):20-24.(Cui W J, Chang Z Y, Li N, et al. Effect of drought stress on physiology ecology and yield of soybean[J]. Journal of Water Resources & Water Engineering,2013, 24(4):20-24.)
相似文献/References:
[1]闫春娟,王文斌,涂晓杰,等.不同生育时期干旱胁迫对大豆根系特性及产量的影响[J].大豆科学,2013,32(01):59.[doi:10.3969/j.issn.1000-9841.2013.01.014]
YAN Chun-juan,WANG Wen-bin,TU Xiao-jie,et al.Effect of Drought Stress at Different Growth Stage on Yield and Root Characteristics of Soybean[J].Soybean Science,2013,32(02):59.[doi:10.3969/j.issn.1000-9841.2013.01.014]
[2]梁 鹏,邢兴华,周 琴,等.α-萘乙酸对干旱和复水处理下大豆幼苗生长和光合作用的影响[J].大豆科学,2011,30(01):50.[doi:10.11861/j.issn.1000-9841.2011.01.0050]
LIANG Peng,XING Xing-hua,ZHOU Qin,et al.Effect of NAA on Growth and Photosynthetic Characteristic of Soybean Seedling under Drought and Re-watering[J].Soybean Science,2011,30(02):50.[doi:10.11861/j.issn.1000-9841.2011.01.0050]
[3]刘颖,张明怡,韩光,等.干旱胁迫下钾对大豆叶片保护酶活性及产量的影响[J].大豆科学,2011,30(02):341.[doi:10.11861/j.issn.1000-9841.2011.02.0341]
LIU Ying,ZHANG Ming-yi,HAN Guang,et al.Effect of Potassium on Soybean Leaf Protective Enzymes and Yield under Drought Stress[J].Soybean Science,2011,30(02):341.[doi:10.11861/j.issn.1000-9841.2011.02.0341]
[4]钟鹏,吴俊江,刘丽君,等.干旱胁迫对不同磷效率基因型大豆膜脂过氧化作用的影响[J].大豆科学,2008,27(04):610.[doi:10.11861/j.issn.1000-9841.2008.04.0610]
ZHONG-Peng,WU Jun-jiang,LIU Li-jun,et al.Effect of Drought Stress on Lipid Peroxidation in Soybean Varieties with Different P Efficiency[J].Soybean Science,2008,27(02):610.[doi:10.11861/j.issn.1000-9841.2008.04.0610]
[5]王伟,姜伟,张金龙,等.大豆种质的耐旱性鉴定及耐旱指标筛选[J].大豆科学,2015,34(05):808.[doi:10.11861/j.issn.1000-9841.2015.05.0808]
WANG Wei,JIANG Wei,ZHANG Jin-long,et al.Selection of Drought-tolerant Soybean and Evaluation of the Drought.tolerance Indices[J].Soybean Science,2015,34(02):808.[doi:10.11861/j.issn.1000-9841.2015.05.0808]
[6]高鑫宇,刘丽君,刘博,等.PEG 模拟干旱对大豆抗氧化酶活性及抗氧化能力的影响[J].大豆科学,2016,35(04):616.[doi:10.11861/j.issn.1000-9841.2016.04.0616]
GAO Xin-yu,LIU Li-jun,LIU Bo,et al.Effect of Drought Stress Simulated by PEG on Antioxidant Enzyme Activitiesand Antioxidant Capacity in Soybean[J].Soybean Science,2016,35(02):616.[doi:10.11861/j.issn.1000-9841.2016.04.0616]
[7]金毅,郑浩宇,金喜军,等.外源ABA、SA及JA对干旱胁迫及复水下大豆生长的影响[J].大豆科学,2016,35(06):958.[doi:10.11861/j.issn.1000-9841.2016.06.0958]
JIN Yi,ZHENG Hao-yu,JIN Xi-jun,et al.Effect of ABA,SA and JA on Soybean Growth Under Drought Stress and Re-watering[J].Soybean Science,2016,35(02):958.[doi:10.11861/j.issn.1000-9841.2016.06.0958]
[8]刘丽君,尹田夫,孟良.大豆原生质膜及混合细胞器膜脂脂肪酸对干旱胁迫的反应[J].大豆科学,1991,10(01):46.[doi:10.11861/j.issn.1000-9841.1991.01.0046]
[J].Soybean Science,1991,10(02):46.[doi:10.11861/j.issn.1000-9841.1991.01.0046]
[9]谢甫绨,董钻,赵艺新.大豆器官间的热能分布与耐旱性的关系初报[J].大豆科学,1993,12(02):107.[doi:10.11861/j.issn.1000-9841.1993.02.0107]
[J].Soybean Science,1993,12(02):107.[doi:10.11861/j.issn.1000-9841.1993.02.0107]
[10]刘莎莎,柏新富,冯春晓,等.干旱条件下土壤盐分对大豆生长及光合作用的影响[J].大豆科学,2017,36(06):921.[doi:10.11861/j.issn.1000-9841.2017.06.0921]
LIU Sha-sha,BAI Xin-fu,FENG Chun-xiao,et al.Effects of Soil Salinity on the Growth and Photosynthesis of Soybean under Drought Conditions[J].Soybean Science,2017,36(02):921.[doi:10.11861/j.issn.1000-9841.2017.06.0921]
备注/Memo
基金项目:国家农作物转基因重大专项(2014ZX08004002-002);黑龙江省留学基金(LC2012C37/C0601);哈尔滨市青年人才计划(2013RFQYJ016);国家现代农业产业技术体系(CARS04-PS05)。第一作者简介:魏崃(1985-),女,博士,助理研究员,主要从事大豆分子育种研究。 E-mail:adalwei@126.com。通讯作者:刘丽君(1958-),女,研究员,主要从事大豆遗传育种研究。E-mail:nkyssbd@126.com。