GAO Ming-xiao,GUO Na,XUE Chen-chen,et al.Cloning of the Soybean △1-Pyrroline-5-Carboxylate Genes GmP5CS1 and GmP5CS2 and Construction of Its Overexpression Vectors[J].Soybean Science,2016,35(01):25-30,38.[doi:10.11861/j.issn.1000-9841.2016.01.0025]
大豆△1-吡咯啉-5-羧酸合成酶基因GmP5CS1和GmP5CS2的克隆与过表达载体构建
- Title:
- Cloning of the Soybean △1-Pyrroline-5-Carboxylate Genes GmP5CS1 and GmP5CS2 and Construction of Its Overexpression Vectors
- Keywords:
- Glycine max L Merr; GmP5CS gene; Gateway technology
- 文献标志码:
- A
- 摘要:
- 利用同源克隆方法从强耐旱栽培大豆(Glycine max)品种齐黄22中克隆得到2个编码大豆△1-吡咯啉-5-羧酸合成酶(P5CS)的基因,分别命名为GmP5CS1和GmP5CS2。氨基酸序列分析发现,GmP5CS1包含1个长度为2 163 bp的ORF,编码720个氨基酸,等电点pI为6,70,分子量大小为78,38 kDa;GmP5CS2包含1个长度为2 271 bp的ORF,编码756个氨基酸,等电点pI为6.10,分子量大小为82.18 kDa。与NCBI公布的部分物种蛋白质序列比对发现,GmP5CS1与紫花苜蓿(Medicago sativa)的亲缘关系最高,GmP5CS2与豇豆(Vigna unguiculata)的亲缘关系最高。组织表达分析表明,GmP5CS1与GmP5CS2基因在大豆的各个组织中均有表达,其中叶和根中的表达量相对较高,茎中表达量次之,花和籽粒中的表达量相对较低。利用Gateway技术得到植物过表达载体pEarleyGate103-GmP5CS,再转入根癌农杆菌EHA105中,为GmP5CS基因的转化及功能分析奠定了基础。
- Abstract:
- In this study, we cloned two genes encoding soybean △ 1-?pyrroline-5- carboxylic acid synthase(P5CS) by homology cloning method of cultivation from the strong drought tolerant soybean (Glycine max) variety Qihuang 22, named GmP5CS1 and GmP5CS2. The amino acid sequence analysis found that GmP5CS1 contained a length of 2 163 bp ORF, encoding 720 amino acids, isoelectric point (pI) was 6.70, protein was weak acid, molecular weight was 78.38 kDa; ?GmP5CS2 contained a length of 2 271 bp ORF, encoding 756 amino acids, isoelectric point(pI) was 6.10, acidic protein, molecular weight was 82.18 kDa. Phylogenetic analysis showed that GmP5CS1 affinity with Medicago sativa highest, GmP5CS2 affinity with Vigna unguiculata highest The organization expression analysis found that GmP5CS1 and GmP5CS2 genes expressed in all soybean organizations.Gene relative expression in leaf and root is higher, relative expression in the stem is middle, the relative expression of flowers and seed is relatively lower A plant over-expression vector of pEarleyGate103-GmP5CS was constructed by Gateway technology, and was transferred into Agrobacterium EHA105, which would lay a foundation of its conversion into the plant and provide a foundation for further studying the function of GmP5CS gene in soybean
参考文献/References:
[1]Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: Achievements and limitations[J]. Curreng Opinion in Biotechnology, 2005, 16: 123-132.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
备注/Memo
基金项目:国家转基因生物新品种培育科技重大专项(2014ZX08004);国家自然科学基金(31301340,31301343);国家现代农业产业技术体系(CARS-004-PS10);江苏省农业科技支撑计划(BE2013350);长江学者和创新团队发展计划(PCSIRT13073);江苏省现代作物生产协同创新中心(JCIC-MCP)。