ZHANG Hong,ZHENG Shi-ying,LIU Gui-zhong,et al.Effects of N+Implantation on Germination Percentage of Seeds and Physiological Property of Seedlings in Soybean[J].Soybean Science,2015,34(04):630-634.[doi:10.11861/j.issn.1000-9841.2015.04.0630]
N+注入对大豆种子发芽率及幼苗生理特性的影响
- Title:
- Effects of N+Implantation on Germination Percentage of Seeds and Physiological Property of Seedlings in Soybean
- 文献标志码:
- A
- 摘要:
- 为了揭示幼苗生理生化指标的变化规律与N+离子注入能量、剂量的内在关系,探索不同大豆品种适宜N+离子注入能量及剂量,以4个大豆品种齐黄34(Q34)、德豆99-16(D99-16)、冀豆12(J12)、荷豆12(H12)为材料,采用6个处理(15 keV,2.4×1013.N+.m-2;15 keV,4.8×1013.N+?m-2;15 keV,7.2×1013N+.m-2;25 keV,2.4×1013N+.m-2;25 keV,4.8×1013N+.m-2;25 keV,7.2×1013N+.m-2),研究了N+注入对大豆种子发芽率及幼苗的超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)的活性、丙二醛和可溶性蛋白含量等生理指标的影响。结果表明:在一定的N+注入的能量剂量范围内,随注入能量和剂量的增加,种子的发芽率、SOD、POD、CAT的活性、可溶性蛋白含量都表现为先增后降的变化趋势,而丙二醛含量的变化趋势与之相反。促进幼苗生长的各品种适宜N+注入能量和剂量值分别为D99-16和J12:15 keV、4.8×1013 N+.m-2;H12:15 keV、7.2×10 13 N+.m-2;Q34:25 keV、2.4×1013 N+.m-2。诱变育种宜采用的能量、剂量值为J12、H12、D99-16:25 keV,2.4×1013 N+.m-2,Q34:大于25 keV,7.2×1013N+.m-2。
- Abstract:
- In order to reveal the intrinsic relationships between changing rule of the seedling physiological and biochemical indexes and N+?implantation energy and dose, exploring suitable N+implantation energy and dose for different soybean varieties, effects of N+?implantation on percentage of seeds, activities of superoxide dismutase(SOD),peroxidase(POD),and catalase(CAT),and contents of malondialdehyde(MDA)and soluble protein physiological indexes were researched using four soybean cultivars,namely Qihuang 34(Q34),Dedou 99-16(D99-16),Jidou 12(J12),and Hedou 12(H12),as materials and 6 treatments (15 keV,2.4×1013N+.m-2;15 keV,4.8×1013+.m-2;15 keV,7.2×1013N+.m-2;25 keV,2.4×1013N+.m-2;25 keV,4.8×1013N+.m-2;25 keV,7.2×1013N+.m-2).The results were as follows: In a certain range of energy and dosage, with the increase of the implantation energy and dose, the germination rate of seeds, the activities of SOD, POD and CAT, and soluble protein content all expressed a change trend of first increasing then dropping, and the tendency of the MDA content was on the contrary. Suitable values of energy and dose for N+implantation, promoting the seedling growth of various varieties, were D99-16 and J12: 15 keV, 4.8 × 1013 N+.m-2; H12: 15 keV, 7.2 × 1013 N+.m-2; Q34: 25 keV, 2.4 × 1013N+.m-2; respectively Appropriate values for mutation breeding were J12, H12, and D99.16: 25 keV, 2.4× 1013N+.m-2; Q34: bigger than 25 keV, 7.2×1013 N+.m-2. The research was significant for soybean mutation breeding by N+implantation method.
参考文献/References:
[1]余增亮.离子束生物技术引论[M]. 合肥: 安徽科学技术出版社, 1998:67-84(Yu Z L.Introduction to ion beam biotechnology[M]. Hefei: Anhui Science and Technology Press, 1998:67-84)
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(04):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(04):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(04):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(04):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(04):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(04):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(04):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(04):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(04):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(04):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
备注/Memo
基金项目:2013年德州学院生物物理实验室专项计划(311710)。