YIN Xue-wei,ZHANG Xiao-chun,WANG Hong-mei,et al.Group Improvement of Double-Season Waxy Sorghum and Soybean Intercropping Pattern[J].Soybean Science,2015,34(02):233-237.[doi:10.11861/j.issn.1000-9841.2015.02.0233]
双季糯高粱间作大豆群体优化技术研究
- Title:
- Group Improvement of Double-Season Waxy Sorghum and Soybean Intercropping Pattern
- Keywords:
- Double-season waxy sorghum; Soybean; Intercropping; Group improvement
- 分类号:
- S532
- 文献标志码:
- A
- 摘要:
- 为了明确南方双季糯高粱与大豆间作模式下最优群体配置结构,以常规双季糯高粱国窖红1号和大豆品种南豆12为试验材料,比较分析糯高粱和大豆不同密度配置对作物主要农艺性状、产量构成因素、产量及效益的影响。结果表明:同一大豆密度下,随糯高粱密度的增加,两季糯高粱株高均增加,穗长、千粒重、穗粒重降低,产量表现为先增后减;随两作物密度的增加,大豆株高、底荚高度增加,有效分枝数、单株有效荚数、单株粒数和百粒重降低,产量先增加后降低;糯高粱总产以高粱9万株?hm-2、大豆9万株?hm-2密度处理最高,达8 701.39 kg?hm-2;大豆产量以糯高粱7.5万株?hm-2、大豆10.5万株?hm-2密度处理最高,达1 875 kg?hm-2;两季作物总产量、总产值、净收益、产投比均以糯高粱9万株?hm-2、大豆密度105万株?hm-2密度处理最高,分别为10 097.22 kg?hm-2、46 511.1元?hm-2、29 1936 kg?hm-2、2.69。双季糯高粱、大豆1.8 m开厢,“2∶2”间作模式下,国窖红1号、南豆12密度分别为9万和12万株?hm-2是常规双季糯高粱、大豆高产高效最优群体配置结构。
- Abstract:
- In order to definite the best structure of group configuration under double-season waxy sorghum and soybean intercropping pattern, Guojiaohong 1 and Nandou 12 were used as materials, through field experiment, to compare and analyze the effect of main traits, yield components, yield and benefit of different waxy sorghum and soybean densities. The result showed that under the same soybean density, as waxy sorghum density increased, double-season waxy sorghum plant height increased, ear length, 1000-kernel weight, grain number per spike decreased and yield manifestated first increased and then decreased, effective pod per plant, grain number per plant, soybean plant height, bottom pod height increased, effective branches and 100-grain weight decreased, yield manifestated first increased and then decreased as the two crops density increased.When waxy sorghum and soybean densities were respectively 9×104 plant?ha-1?and 9×104?plant?ha-1, double season waxy sorghum yield was the highest, reached 8 701.39 kg?ha-1; When waxy sorghum and soybean densities are respectively 7.5×104?plant?ha-1?and 10.5×104?plant?ha-1, soybean yield was the highest, reached 1 875 kg?ha-1; When waxy sorghum and soybean densities are respectively 9×104 plant?ha-1?and 10.5×104 plant?ha-1, two crops total yield, total output value, net -income and VCR are highest, respectively 10 097.22 kgha-1, 46 511.1 yuan?ha-1, 29 193.6 kg?ha-1, 2.69 Guojiaohong 1and Nandou 12 densities, respectively 9×104?plant?ha-1?and 10.5×104plant?ha-1?is the best structure of group configuration under double-season waxy sorghum and soybean wide row 1.8 m, ‘2∶2’ planting intercropping pattern.
参考文献/References:
[1]郑顺森,袁继超,李德林,等马铃薯,玉米套作模式下田间配置及群体优化[J]中国马铃薯,2010,24(6):80-83(Zheng S S, Yuan J C, Li D L, et al.Optimum plant patterns and group control under relay cropping mode of potatoes and corns[J]Chinese Potato Journal, 2010,24(6):80-83)
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(02):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(02):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(02):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(02):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(02):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(02):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(02):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(02):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(02):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(02):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
备注/Memo
基金项目:重庆市科技攻关计划项目(CSTC2012ggB80055);重庆市应用开发计划项目(CSTC2013yykfA80021);基本科研业务科研费(2013cstc.jbk.00510);种三产四高产高效关键技术集成与示范项目。