WANG Wei-qi,HOU Wen-sheng.Clone and Analysis of Thioredoxin Gene from Soybean (Glycine max L.)[J].Soybean Science,2011,30(03):351-355.[doi:10.11861/j.issn.1000-9841.2011.03.0351]
大豆硫氧还蛋白基因的克隆与分析
- Title:
- Clone and Analysis of Thioredoxin Gene from Soybean (Glycine max L.)
- 文章编号:
- 1000-9841(2011)03-0351-05
- Keywords:
- Soybean; Salt; Thioredoxin gene; Gene clone
- 分类号:
- S565.1
- 文献标志码:
- A
- 摘要:
- 通过对大豆耐盐品种文丰7盐处理抑制差减文库的筛选,获得了一些差异表达的EST序列,与NCBI中EST数据库进行比对分析后发现,其中1个与硫氧还蛋白相关。据此预测了大豆硫氧还蛋白(Thioredoxin,Trx)基因的cDNA序列,并采用RT-PCR方法克隆了大豆Trx基因。生物信息学分析表明:该基因包含1个354 bp的完整开放阅读框,编码118个氨基酸,与拟南芥和烟草的同源性分别为72%和76%。Real-time PCR结果显示:盐处理后,Trx基因在耐盐和盐敏感品种中的表达量均有所提高,但耐盐品种的上调幅度显著高于盐敏感品种,说明其可能具有提高大豆品种耐盐性的作用。
- Abstract:
- Based on screening the suppression subtractive hybridization library which constructed by soybean cultivar ‘wenfeng7’ (salt-tolerant) after salt treatment, we obtained some differentially expressed EST sequences. The EST sequences were compared with the NCBI databases, analysis result showed that one EST sequence related to thioredoxin. A novel thioredoxin gene (Trx) of Glycine max was cloned and identified with the EST obtained from suppression subtractive hybridization library. Bioinformatics analysis showed that the full length of the GmTrx gene cDNA was 354 bp, coded 118 amino acids. Compared with several plants, this gene showed 72%and 76%homology to thioredoxin protein in Arabidopsisand tobacco, respectively. The expression of different soybean varieties under salt and common treatment was analyzed by Real-time PCR method. The result showed that, the expression of Trx gene was up-regulated in both salt-tolerant and sensitive soybean cultivars after salt treatment, although the expression in salt-tolerant cultivars was much higher than that in salt-sensitive cultivars. This gene may be very important for improving the salt tolerance of soybean.
参考文献/References:
[1]国家环保总局. 2007年中国环境状况公报公布[R]. (State Environmental Protection Administration. China environmental state bulletins announced in 2007[R].) [2]Phang T, Shao G, Lam H. Salt tolerance in soybean[J]. Journal of Integrative Plant Biology, 2008, 50(10):1196-1212. [3]Kim M, Kim S. Isolation of cDNA clones differentially accumulated in the placenta of pungent pepper by suppression subtractive hybridization[J]. Molecular Cells, 2001, 11(2):213-219. [4]Sahu B, Shaw B. Isolation, identification and expression analysis of salt-induced genes in Suaeda maritima, a natural halophyte, using PCR-based suppression subtractive hybridization[J]. BMC Plant Biology, 2009, 9(1):69. [5]Sahi C, Agarwal M, Reddy M, et al. Isolation and expression analysis of salt stress-associated ESTs from contrasting rice cultivars using a PCR-based subtraction method[J]. Theoretical and Applied Genetics, 2003, 106(4):620-628. [6]宋丽艳, 叶武威, 赵云雷,等. 陆地棉耐盐相关基因(GhVP)的克隆及分析[J]. 棉花学报, 2010, 22(3):285-288. (Song L Y, Ye W W, Zhao Y L, et al. Isolation and analysis of salt tolerance related gene(GhVP) from Gossypium hirsutum?L.[J]. Cotton Science, 2010, 22(3):285-288. [7]Ji W, Li Y, Li J, et al. Generation and analysis of expressed sequence tags from NaCl-treated Glycine soja?[J]. BMC Plant Biology, 2006, 6(1):4. [8]Wu Y R, Wang Q Y, Ma Y M, et al. Isolation and expression analysis of salt up-regulated ESTs in upland rice using PCR-based subtractive suppression hybridization method[J]. Plant Science, 2004, 168: 847-853. [9]Holmgren A. Thioredoxin and giutaredoxin systems[J]. Journal of Biological Chemistry, 1989, 264:13963-13966. [10]Laughner B J, Sehnke P C, Ferl R J. A novel nuclear member of the thioredoxin superfamily[J]. Plant Physiology, 1998, 118:987-996. [11]Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Research, 2001, 29:e45. [12]李亮,侯文胜. 抑制差减杂交技术在大豆研究中的应用[J].大豆科学,2010, 29(4):702-706. (Li L, Hou W S. Application of suppression subtractive hybridization in soybean research[J]. Soybean Science, 2010, 29 (4):702-706. [13]Diatchenko L, Lukyanov S, Lau Y F, et al. Suppression subtractive hybridization: a versatile method for indentifying differentially expressed genes[J]. Methods Enzymology, 1999, 303:349-389. [14]Li X M, Nield J, Hayman D, et al. Thioredoxin activity in the C terminus of Phalaris S protein[J]. The Plant Journal, 1995, 8:133-138. [15]Laurent T C, Moore E C, Reichard P. Enzymatic synthesis of deoxyribonucleotides[J]. Journal of Biological Chemistry, 1964, 239(10):3436-3444. [16]Wong J H, Cai N, Balmer Y, et al. Thioredoxin targets of developing wheat seeds identified by complementary proteomic approaches[J]. Phytochemistry, 2004, 65:1629-1640. [17]Vieira Dos Santos C, Rey P. Plant thioredoxins are key actors in the oxidative stress response[J]. Trends in Plant Science, 2006, 11:329-334. [18]Lundstrom J, Holmgren A. Protein disulfide-isomerase is a substrate for thioredoxin reductase and has thioredoxin-like activity[J]. Journal of Biological Chemistry, 1990, 265:9114-9120. [19]Schenk H, Klein M, Erdbrugger W, et al. Distinct effects of thioredoxin and anthoxidants on the activation of transcription factors NF-kappa B and AP-1[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(5):1672-1676. [20]Saitoh M, Nishitoh H, Fujii M, et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK1)[J]. The EMBO Journal, 1998, 17(9):2596-2606. [21]Reichheld J P, Mestres-Ortega D, Christophe L, et al. The multigenic family of thioredoxin h in Arabidopsis thaliana: specific expression and stress response[J]. Plant Physiology and Biochemistry, 2002, 40:685-690. [22]李巧云, 牛洪斌, 任江萍, 等. 转外源Trxs基因大麦耐盐性有关生理生化特性分析[J]. 作物杂志, 2009(5):7-10. (Li Q Y, Niu H B, Ren J P, et al. Effects of exogenous Trxs?on physiological and biochemical characteristics of salt tolerance in transgenic barley seedlings[J]. Crops, 2009(5):7-10. [23]Broin M, Cuin S, Peltier G, et al. Involvement of CDSP32, a drought-induced thioredoxin, in the response to oxidative stress in potato plants[J]. FEBS letters, 2000, 467:245-248.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(03):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(03):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(03):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(03):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(03):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(03):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(03):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(03):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(03):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(03):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
备注/Memo
基金项目:国家自然科学基金资助项目(30771358)。