[1]刘俊,李海洋,贺米兰,等.大豆TOE基因的进化分析及开花调控功能解析[J].大豆科学,2021,40(05):581-591.[doi:10.11861/j.issn.1000-9841.2021.05.0581]
 LIU Jun,LI Hai-yang,HE Mi-lan,et al.Molecular Evolutionary and Flowering Regulation Function Analysis of TOE Genes in Soybean[J].Soybean Science,2021,40(05):581-591.[doi:10.11861/j.issn.1000-9841.2021.05.0581]
点击复制

大豆TOE基因的进化分析及开花调控功能解析

参考文献/References:

[1]Graham P H, Vance C P. Legumes: Importance and constraints to greater use[J]. Plant Physiology, 2003, 131(3): 872-877.

[2]姚林. 中美贸易摩擦下的中国大豆产业现状与发展趋势[J]. 中国油脂, 2020, 45(2): 10-14. (Yao L. Current situation and development trend of China′s soybean industry under Sino-US trade friction[J]. China Oils and Fast, 2020, 45(2): 10-14.)
[3]查霆, 钟宣伯, 周启政, 等. 我国大豆产业发展现状及振兴策略[J]. 大豆科学, 2018, 37(3): 458-463. (Zha T, Zhong X B, Zhou Q Z, et al. Development status of China′s soybean industry and strategies of revitalizing[J]. Soybean Science, 2018, 37(3): 458-463.)
[4]Watanabe S, Harada K, Abe J. Genetic and molecular bases of photoperiod responses of flowering in soybean[J]. Breeding Science, 2012, 61(5): 531-543.
[5]夏正俊. 大豆光周期反应与生育期基因研究进展[J]. 作物学报, 2013, 39(4): 571-579. (Xia Z J. Research progresses on photoperiodic flowering and maturity genes in soybean (Glycine max Merr.)[J]. Acta Agronomica Sinica, 2013, 39(4): 571-579.)
[6]Xia Z J, Watanabe S, Yamada T, et al. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering[J]. Proceedings of the National Academy of Sciences, 2012, 109(32): E2155-E2164.
[7]Watanabe S, Xia Z J, Hideshima R, et al. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering[J]. Genetics Society of America, 2011, 188(2): 395-407.
[8]Watanabe S, Hideshima R, Xia Z J, et al. Map-based cloning of the gene associated with the soybean maturity locus E3[J]. Genetics Society of America, 2009, 182(4): 1251-1262.
[9]Liu B H, Kanazawa A, Matsumura H, et al. Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene[J]. Genetics Society of America, 2008, 180(2): 995-1007.
[10]Dissanayaka A, Rodriguez T O, Di S, et al. Quantitative trait locus mapping of soybean maturity gene E5[J]. Breeding Science, 2016, 66(3): 407-415.
[11]Cober E R. Long juvenile soybean flowering responses under very short photoperiods[J]. Crop Science, 2011, 51(1): 140-145.
[12]Cober E R, Voldeng H D. Low R:FR light quality delays flowe-ring of E7E7 soybean lines[J]. Crop Science, 2001, 41(6): 1823-1826.
[13]Cober E R, Molnar S J, Charette M, et al. A new locus for early maturity in soybean[J]. Crop Science, 2010, 50(2): 524-527.
[14]Kong F J, Nan H Y, Cao D, et al. A new dominant gene E9 conditions early flowering and maturity in soybean[J]. Crop Science, 2014, 54(6): 2529-2535.
[15]Samanfar B, Molnar S J, Charette M, et al. Mapping and identification of a potential candidate gene for a novel maturity locus, E10, in soybean[J]. Theoretical and Applied Genetics, 2017, 130(2): 377-390.
[16]Wang F F, Nan H Y, Chen L Y, et al. A new dominant locus, E11, controls early flowering time and maturity in soybean[J]. Molecular Breeding, 2019, 39(5): 70.
[17]Lu S J, Zhao X H, Hu Y L, et al. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield[J]. Nature Genetics, 2017, 49(5): 773-779.
[18]Schmutz J, Cannon S B, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010, 463(7278): 178-183.
[19]Cao D, Li Y, Lu S J, et al. GmCOL1a and GmCOL1b function as flowering repressors in soybean under long - day conditions[J]. Plant and Cell Physiology, 2015, 56(12): 2409-2422.
[20]Takeshima R, Hayashi T, Zhu J, et al. A soybean quantitative trait locus that promotes flowering under long days is identified as FT5a, a FLOWERING LOCUS T ortholog[J]. Journal of Experimental Botany, 2016, 67(17): 5247-5258.
[21]Jiang B J, Zhang S W, Song W W, et al. Natural variations of FT family genes in soybean varieties covering a wide range of maturity groups[J]. BMC Genomics, 2019, 20(1): 230.[22]Sun F, Xu M L, Park C, et al. Characterization and quantitative trait locus mapping of late - flowering from a Thai soybean cultivar introduced into a photoperiod - insensitive genetic background[J]. PLoS One, 2019, 14(12): e0226116.[23]Kong F J, Liu B H, Xia Z J, et al. Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean[J]. Plant Physiology, 2010, 154(3): 1220-1231.[24]Guo G Y, Xu K, Zhang X M, et al. Extensive analysis of GmFTL and GmCOL expression in northern soybean cultivars in field conditions[J]. PLoS One, 2015, 10(9): e0136601.[25]Kim S, Soltis P S, Wall K, et al. Phylogeny and domain evolution in the APETALA2-like gene family[J]. Molecular Biology and Evolution, 2006, 23(1): 107-120.[26]Schmid M, Uhlenhaut N H, Godard F, et al. Dissection of floral induction pathways using global expression analysis[J]. Development, 2003, 130(24): 6001-6012.[27]Aukerman M J, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2 - like target genes[J]. The Plant Cell, 2003, 15(11): 2730-2741.[28]Lee Y S, Lee D Y, Cho L H, et al. Rice miR172 induces flowering by suppressing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of Ehd1 and florigens[J]. Rice, 2014, 7(1), 31.[29]Wu G, Park M Y, Conway S R, et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis[J]. Cell, 2009, 138(4): 750-759.[30]Martin A, Adam H, Díaz-Mendoza M, et al. Graft - transmissible induction of potato tuberization by the microRNA miRl72[J]. Development, 2009, 136(17): 2873-2881.[31]Zhao X H, Cao D, Huang Z J, et al. Dual functions of GmTOE4a in the regulation of photoperiod - mediated flowering and plant morphology in soybean[J]. Plant Molecular Biology, 2015, 88(4): 343-355.[32]Wang T, Sun M Y, Wang X S, et al. Over-expression of GmGIa - regulated soybean miR172a confers early flowering in transgenic Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2016, 17(5): 645.[33]Kim K D, EI Baidouri M, Abernathy B, et al. A comparative epigenomic analysis of polyploidy - derived genes in soybean and common bean[J]. Plant Physiology, 2015, 168(4): 1433-1447.[34]Lu S, Dong L D, Kong F J, et al. Stepwise selection on home-ologous PRR genes controlling flowering and maturity during soybean domestication[J]. Nature Genetics, 2020, 52(4): 428-436.[35]Chen C J, Chen H, Zhang Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202.[36]Jofuku K D, den Boer B G, van Montagu M, et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2[J]. The Plant Cell, 1994, 6(9): 1211-1225.[37]Castillejo C, Pelaz S. The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering[J]. Current Biology, 2008, 18(17): 1338-1343.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(05):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(05):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(05):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(05):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(05):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(05):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(05):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(05):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(05):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(05):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

收稿日期:2021-03-09基金项目:国家自然科学基金(31801383);广东省自然科学基金(2018A030313199)。第一作者:刘俊(1995—),男,硕士,主要从事大豆开花调控分子机理研究。E-mail:2111814034@e.gzhu.edu.cn。通讯作者:赵晓晖(1985—),女,博士,副教授,主要从事大豆分子遗传学研究。E-mail:zhaoxiaohui_1234@163.com。

更新日期/Last Update: 2021-09-27