[1]刘峻呈,汪芳,冯晨,等.大豆MicroRNAs功能性研究进展[J].大豆科学,2019,38(06):986-994.[doi:10.11861/j.issn.1000-9841.2019.06.0986]
 LIU Jun-cheng,WANG Fang,FENG Chen,et al.Research Progress in Functions of Soybean MicroRNAs[J].Soybean Science,2019,38(06):986-994.[doi:10.11861/j.issn.1000-9841.2019.06.0986]
点击复制

大豆MicroRNAs功能性研究进展

参考文献/References:

[1]Wagner A E, Piegholdt S, Ferraro M, et al. Food derived microRNAs[J]. Food & Function, 2015, 6(3): 714-718.[2]Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843-854.[3]Lagosquintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs[J]. Science, 2001, 294(5543): 853-858.[4]Lau N C, Lim L P, Weinstein E G, et al. An abundant class of tiny RNAs with probable regulatory roles in C. elegans[J]. Science, 2001, 294(5543): 858-862.[5]Lee R C, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans[J]. Science, 2001, 294(5543): 862-864.[6]Llave C, Carrington J C. Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA[J]. Science, 2002, 297(5589): 2053-2056.[7]Reinhart B J, Weinstein E G, Rhoades M W, et al. MicroRNAs in plants[J]. Genes Development, 2002, 16(13):1616-1626.[8]Zhang L, Hou D, Chen X, et al. Exogenous plant miR168a specifically targets mammalian LDLRAP1: Evidence of cross-kingdom regulation by microRNA[J]. Cell Research, 2012, 22(1): 107-126.[9]Cai Z, Wang Y, Zhu L, et al. GmTIR1/GmAFB3-based auxin perception regulated by miR393 modulates soybean nodulation[J]. New Phytologist, 2017, 215(2): 672-686.[10]Subramanian S, Fu Y, Sunkar R, et al. Novel and nodulation-regulated microRNAs in soybean roots[J]. BMC Genomics, 2008, 9(1): 160-174.[11]Llave C, Xie Z X, Kasschau K D, et al. Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA[J]. Science, 2002, 297(5589): 2053-2056.[12]Guo H, Xie Q, Fei J, et al. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to down regulate auxin signals for Arabidopsis lateral root development[J]. Plant Cell, 2005, 17(5): 1376-1386.[13]Carlsbecker A, Lee J Y, Roberts C J, et al. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate[J]. Nature, 2010, 465(7296): 316-321.[14]Combier J P, Frugier F, de Billy F, et al. MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula[J]. Genes & Development, 2006, 20(22): 3084-3088.[15]Wang Y, Li K, Chen L, et al. MicroRNA167-directed regulation of the auxin response factors GmARF8a and GmARF8b is required for soybean nodulation and lateral root development[J]. Plant Physiology, 2015, 168(3): 984-999.[16]李小平, 曾庆发, 张根生, 等. 大豆microRNA基因GmMIR160A负调控植物叶片衰老进程[J]. 广西植物, 2015, 35(1): 84-91. (Li X P, Zeng Q F, Zhang G S, et al. GmMIR160A, a class of soybean microRNA gene, negatively regulates progress of leaf senescence[J]. Guihaia, 2015, 35(1): 84-91.)[17]Aukerman M J, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-Like target genes[J]. Plant Cell, 2003, 15(11): 2730-2741.[18]Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development[J]. Science, 2004, 303(5666): 2022-2025.[19]Zhu Q H, Helliwell C A. Regulation of flowering time and floral patterning by miR172[J]. Journal of Experimental Botany, 2011, 62(2):487-495.[20]Wang T, Sun M Y, Wang X S, et al. Over-expression of GmGIa-regulated soybean miR172a confers early flowering in transgenic Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2016, 17(5): 645-653.[21]Gyula P, Baksa I, Tóth T, et al. Ambient temperature regulates the expression of a small set of sRNAs influencing plant development through NF-YA2 and YUC2[J]. Plant, Cell & Environment, 2018, 16(5): 356-371.[22]Li W, Wang T, Zhang Y, et al. Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana[J]. Journal of Experimental Botany, 2016, 67(1): 175-194.[23]Kulcheski F R, Molina L G, Da F G, et al. Novel and conserved microRNAs in soybean floral whorls[J]. Gene, 2016, 575(2): 213-223.[24]Sun Z, Su C, Yun J, et al. Genetic improvement of the shoot architecture and yield in soybean plants via the manipulation of GmmiR156b[J]. Plant Biotechnology Journal, 2019, 17(1): 50-62.[25]Gupta O P, Nigam D, Dahuja A, et al. Regulation of isoflavone biosynthesis by miRNAs in two contrasting soybean genotypes at different seed developmental stages[J]. Frontiers in Plant Science, 2017, 8: 567-583.[26]Wong J, Gao L, Yang Y, et al. Roles of small RNAs in soybean defense against Phytophthora sojae infection[J]. The Plant Journal, 2014, 79(6): 928-940.[27]Ye C Y, Xu H, Shen E H, et al. Genome-wide identification of non-coding RNAs interacted with microRNAs in soybean[J]. Frontiers in Plant Science, 2014, 5: 743-753.[28]Gou J Y, Felippes F F, Liu C J, et al. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor[J]. Plant Cell, 2011, 23(4):1512-1522.[29]Sindhu A S, Maier T R, Mitchum M G, et al. Effective and specific in planta RNAi in cyst nematodes: Expression interference of four parasitism genes reduces parasitic success[J]. Journal of Experimental Botany, 2008, 60(1): 315-324.[30]Xu M, Li Y, Zhang Q, et al. Novel miRNA and phasiRNA biogenesis networks in soybean roots from two sister lines that are resistant and susceptible to SCN race 4[J]. PLoS One, 2014, 9(10): 110-119.[31]Li X, Wang X, Zhang S, et al. Identification of soybean microRNAs involved in soybean cyst nematode infection by deep sequencing[J]. PLoS One, 2012, 7(6): 1-10.[32]Cui X, Yan Q, Gan S, et al. Overexpression of gma-miR1510a/b suppresses the expression of a NB-LRR domain gene and reduces resistance to Phytophthora sojae[J]. Gene, 2017, 621: 32-39.[33]Mchale L, Tan X, Koehl P, et al. Plant NBS-LRR proteins: Adaptable guards[J]. Genome Biology, 2006, 7(4): 1-11.[34]郭娜, 崔晓霞, 赵晋铭, 等. 大豆疫霉根腐病相关miRNA的鉴定[J].大豆科学, 2015, 34(4): 666-670. (Guo N, Cui X J, Zhao J M, et al. Identification of miRNA resistant to phytophthora root rot in soybean[J]. Soybean Science, 2015, 34(4): 666-670.)[35]Yin X, Wang J, Cheng H, et al. Detection and evolutionary analysis of soybean miRNAs responsive to soybean mosaic virus[J]. Planta, 2013, 237(5): 1213-1225.[36]Jossey S. Role of virus genes in seed and aphid transmission and development of a virus-induced gene silencing system to study seed development in soybean[J]. Dissertations & Theses-Gradworks, 2012, 38(3): 28-34.[37]Liu W C, Zhou Y G, Li X W, et al. Tissue-specific regulation of gma-miR396 family on coordinating development and low water availability responses[J]. Frontiers in Plant Science, 2017, 8: 1112.[38]张彦琴, 董春林, 杨丽莉, 等. 大豆抗旱品种响应干旱胁迫的分子机理[J]. 基因组学与应用生物学, 2016, 35(12): 3514-3520. (Zhang Y Y, Dong C L, Yang L L, et al. Molecular mechanism of drought-resistant soybean variety[J]. Genomics and Applied Biology, 2016, 35(12): 3514-3520.) [39]Ni Z, Hu Z, Jiang Q, et al. Overexpression of gma-miR394a confers tolerance to drought in transgenic Arabidopsis thaliana[J]. Biochemical and Biophysical Research Communications, 2012, 427(2): 330-335.[40]贾琪, 孙松, 孙天昊, 等. F-box蛋白家族在植物抗逆响应中的作用机制[J]. 中国生态农业学报, 2018, 166(8): 39-50. (Jia Q, Sun S, Sun T H, et al. Mechanism of F-box protein family in plant resistance response to environmental stress[J]. Chinese Journal of Eco-Agriculture, 2018, 166(8): 39-50.)[41]徐妙云, 朱佳旭, 张敏, 等. 植物miR169/NF-YA调控模块研究进展[J]. 遗传, 2016, 38(8): 700-706. (Xu M Y, Zhu J X, Zhang M, et al. Advances on plant miR169/NF-YA regulation modules[J]. Hereditas, 2016, 38(8): 700-706.)[42]Ni Z, Hu Z, Jiang Q, et al. GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress[J]. Plant Molecular Biology, 2013, 82(1-2): 113-129.[43]王兴超. 大豆miR1510a的表达分析及功能验证[D]. 长春: 吉林农业大学, 2016. (Wang X C. Expression and functional analysis of soybean miR1510a[D]. Changchun: Jilin Agricultural University, 2016.)[44]Htwe N M P S. 大豆逆境胁迫诱导的miRNA鉴定及功能分析[D]. 北京: 中国农业科学院, 2015. (Htwe N M P S. Identification of stress induced miRNAs and their functional analysis in soybean[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015.)[45]Huang S C, Lu G H, Tang C Y, et al. Identification and comparative analysis of aluminum-induced microRNAs conferring plant tolerance to aluminum stress in soybean[J]. Biologia Plantarum, 2017, 62(1): 97-108.[46]Fang X L, Zhao Y Y, Ma Q B, et al. Identification and comparative analysis of cadmium tolerance-associated miRNAs and their targets in two soybean genotypes[J]. PLoS One, 2013, 8(12): 1-13.[47]张路, 王利华, 桂和荣, 等. 土壤重金属胁迫与植物相关miRNA的研究进展[J]. 北方园艺, 2017, 41(18): 180-185. (Zhang L, Wang L H, Gui H R, et al. Progress on the soil heavy metal stress and associated miRNA of plant[J]. Northern Horticulture, 2017, 41(18): 180-185.)[48]Noman A, Aqeel M. miRNA-based heavy metal homeostasis and plant growth[J]. Environmental Science & Pollution Research, 2017, 24(11): 10068-10082.[49]王丽丽, 赵统利, 葛金涛, 等. 植物低温胁迫响应miRNAs在植物抗寒研究中的应用前景[J]. 上海农业学报, 2017(6):129-134. (Wang L L, Zhao T L, Ge J T, et al. Application prospects of plant cold-stress-responsive miRNA in cold resistance research of plants[J]. Acta Agriculturae Shanghai, 2017(6): 129-134.)[50]李永光, 艾佳, 王涛, 等. 大豆gma-miR1508a靶基因预测及功能分析[J]. 大豆科学, 2014, 33(4): 483-487. (Li Y G, Ai J, Wang T, et al. The target genes prediction and analysis of gma-miR1508a[J]. Soybean Science, 2014, 33:483-487.)[51]倪志勇, 于月华, 任燕萍, 等. 大豆gma-miR1508a靶基因鉴定及植物表达载体构建[J]. 大豆科学, 2015, 34(6):1090-1092. (Ni Z Y, Yu Y H, Ren Y P, et al. Validation of selected gma-miR1508a targets and construction of its plant expression vectors[J]. Soybean Science, 2015, 34(6): 1090-1092.)[52]Zhang S, Wang Y, Li K, et al. Identification of cold-responsive miRNAs and their target genes in nitrogen-fixing nodules of soybean[J]. International Journal of Molecular Sciences, 2014, 15(8): 13596-13614. [53]吕春雨, 沙爱华. 大豆microRNA168调控植物低磷胁迫响应[J]. 中国油料作物学报, 2017, 39(3):321-325. (Lyu C Y, Sha A H. Response to phosphorus deficiency regulated by microRNA168 in soybean plant[J]. Chinese Journal of Oil Crop Sciences, 2017, 39(3):321-325.)[54]Xu F, Liu Q, Chen L, et al. Genome-wide identification of soybean microRNAs and their targets reveals their organ-specificity and responses to phosphate starvation[J]. BMC Genomics, 2013, 14(1): 66-95.[55]王业建. 大豆对低氮胁迫的形态和生理学响应及介导低氮胁迫miRNA的鉴定[D]. 长沙: 中南大学, 2013. (Wang Y J. Morphological and biological responses of different soybean varieties to low nitrogen and identification of low nitrogen regulated miRNA[D]. Changsha: Central South University, 2013.)[56]Dziedzic M, Powrózek T, Orowska E, et al. Relationship between microRNA-146a expression and plasma renalase levels in hemodialyzed patients[J]. PLoS One, 2017, 12(6): 157-163.[57]汪劼. 闯入动物王国的植物miRNA[J]. 生命的化学, 2016(3): 404-408. (Wang J. Plant miRNAs that break into the animal kingdom[J]. Chemistry of Life, 2016, 3: 404-408.)[58]Anna P, Ferro V A, Tate R J. Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process[J]. Molecular Nutrition & Food Research, 2015, 59(10): 1962-1972.[59]Liu Y C, Chen W L, Kung W H, et al. Plant miRNAs found in human circulating system provide evidences of cross kingdom RNAi[J]. BMC Genomics, 2017, 18(2 suppl.): 112-117.[60]Chin A R, Fong M Y, Somlo G, et al. Cross-kingdom inhibition of breast cancer growth by plant miR159[J]. Cell Research, 2016, 26(2): 217-228.[61]Lukasik A, Zielenkiewicz P. In silico identification of plant miRNAs in mammalian breast milk exosomes-a small step forward[J]. PLoS One, 2014, 9(6): 83-94.[62]Zhen Z, Li X, Liu J, et al. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses[J]. Cell Research, 2015, 25(1): 39-49.[63]Teng Y, Ren Y, Sayed M, et al. Plant-derived exosomal microRNAs shape the gut microbiota[J]. Cell Host & Microbe, 2018, 24(5): 637-652.[64]Hou D, He F, Ma L, et al. The potential atheroprotective role of plant miR156a as a repressor of monocyte recruitment on inflamed human endothelial cells[J]. Journal of Nutritional Biochemistry, 2018, 57(15): 197-205.[65]Tian Y, Cai L, Tian Y, et al. miR156a mimic represses the epithelial-mesenchymal transition of human nasopharyngeal cancer cells by targeting junctional adhesion molecule A[J]. PLoS One, 2016, 11(6): 1-21.[66]潘峰. 植物miRNA-168a跨界调控人基因表达再分析[D]. 泉州: 华侨大学, 2016. (Pan F. A step further analysis of cross-kingdom regulation of miRNA-168a in human cells[D]. Quanzhou: Huaqiao University, 2016.)

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(06):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(06):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(06):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(06):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(06):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(06):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(06):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(06):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(06):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(06):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

基金项目:国家重点研发计划(2016YFD0400201);国家自然科学基金(21476103,31800280);江苏省自然科学基金(BK20180817);江苏省高校协同创新中心现代服务业项目(WTTFY01);江苏省研究生培养创新工程研究生科研与实践创新计划(KYCX18_1424)。第一作者简介:刘峻呈(1994-),男,硕士,主要从事功能性食品与分子营养等研究。E-mail: JunChengL163@163.com。通讯作者:沈新春(1966-),男,博士,教授,主要从事功能性食品与分子营养等研究。E-mail: shenxinchun@nufe.edu.cn。

更新日期/Last Update: 1900-01-01