[1]朱林,左妍妍,曹金山,等.大豆NRT1.2同源基因的生物信息学分析[J].大豆科学,2019,38(03):371-378.[doi:10.11861/j.issn.1000-9841.2019.03.0371]
 ZHU Lin,ZUO Yan-yan,CAO Jin-shan,et al.Bioinformatic Analysis of NRT1.2 Homologous Gene in Soybean[J].Soybean Science,2019,38(03):371-378.[doi:10.11861/j.issn.1000-9841.2019.03.0371]
点击复制

大豆NRT1.2同源基因的生物信息学分析

参考文献/References:

[1]张合琼, 张汉马, 梁永书, 等. 植物硝酸盐转运蛋白研究进展[J]. 植物生理学报, 2016, 52(2): 141-149.(Zhang H Q, Zhang H M, Liang Y S, et al. Research progress of nitrate in plant transport mechanism[J]. Plant Physiology Journal, 2016, 52(02): 141-149.)
[2]Alboresi A, Gestin C, Leydecker M T, et al. Nitrate, a signal relieving seed dormancy in Arabidopsis[J]. Plant Cell and Environment, 2005, 28(4): 500-512.
[3]Zhang H, Forde B G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture[J]. Science, 1998, 279(5349): 407-409.
[4]Walch-Liu P, Neumann G, Bangerth F, et al. Rapid effects of nitrogen form on leaf morphogenesis in tobacco[J]. Journal of Experimental Botany, 2000, 51(343): 227-237.
[5]Lin Y L, Tsay Y F. Influence of differing nitrate and nitrogen availability on flowering control in Arabidopsis[J]. Journal of Experimental Botany, 2017, 68(10): 2603-2609.
[6]Nacry P, Bouguyon E, Gojon A. Nitrogen acquisition by roots: Physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource[J]. Plant Soil, 2013, 370(1-2): 1-29.
[7]O’Brien J A, Vega A, Bouguyon E, et al. Nitrate transport, sensing, and responses in plants[J]. Molecular Plant, 2016, 9(6): 837-856.
[8]Miller A J, Smith S J. Nitrate transport and compartmentation incereal root cells[J]. Journal of Experimental Botany, 1996, 47: 843-854.
[9]Krapp A, David L C, Chardin C, et al. Nitrate transport and signalling in Arabidopsis[J]. Journal of Experimental Botany, 2014, 65(3): 789-798.
[10]Wang Y, Hsu P, Tsay Y F. Uptake, allocation and signaling of nitrate[J]. Trends in Plant Science, 2012, 17(8): 458-467.
[11]Huang N C, Liu K H, Lo H J, et al. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake[J]. The Plant Cell, 1999, 11(8): 1381-1392.
[12]Okamoto M, Vidmar J J, Glass A D M. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: Responses to nitrate provision[J]. Plant and Cell Physiology, 2003,44(3): 304-317.
[13]Wang W, Hu B, Yuan D, et al. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice[J]. Plant Cell, 2018, 30(3): 638-651.
[14]Wang R, Crawford N M. Genetic identification of a gene involved in constitutive, high-affinity nitrate transport in higher plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(17): 9297-9301.
[15]Crawford N M, Glass A D M. Molecular and physiological aspects of nitrate uptake in plants[J]. Trends in Plant Science,1998, 3(10): 389-395.
[16]Wang R, Okamoto M, Xing X, et al. Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1 000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism[J]. Plant Physiology, 2003, 132(2): 556-567.
[17]Kanno Y, Hanada A, Chiba Y, et al. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor[J]. Proceedings of the National Academy of Sciences, 2012, 109(24): 9653-9658.
[18]Kanno Y, Kamiya Y, Seo M. Nitrate does not compete with abscisic acid as a substrate of AtNPF4.6/NRT1.2/AIT1 in Arabidopsis[J]. Plant Signal Behavior, 2013, 8(12): e26624.
[19]Fraisier V, Dorbe M F, Daniel V F. Identification and expression analyses of two genes encoding putative low-affinity nitrate transporters from Nicotiana plumbaginifolia[J]. Plant Molecular Biology, 2001, 45(2): 181-190.
[20]Zhou J, Theodoulou F L, Muldin I, et al. Cloning and functional characterization of a Brassica napus transporter that is able to transport nitrate and histidine[J]. Journal of Biological Chemistry, 1998, 273(20): 12017-12023.
[21]Lauter F R, Ninnemann O, Bucher M, et al. Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(15): 8139-8144.
[22]Severin A J, Woody J L, Bolon Y T, et al. RNA-Seq atlas of Glycine max: A guide to the soybean transcriptome[J]. BMC Plant Biology, 2010, 10: 160.
[23]Hua Y, Zhou T, Song H, et al. Integrated genomic and transcriptomic insights into the two-component high-affinity nitrate transporters in allotetraploid rapeseed[J]. Plant and Soil, 2018, 427(1-2): 245-268.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(03):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(03):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(03):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(03):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(03):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(03):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(03):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(03):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(03):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(03):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

收稿日期:2018-12-29

基金项目:国家科技重大专项 (2018ZX08009-19B);国家自然科学基金(31872873)。
第一作者简介:朱林(1992-),男,硕士,主要从事大豆硝酸盐转运与共生固氮等研究。E-mail:onelin@163.com。
通讯作者:王幼宁(1977-),女,博士,副教授,主要从事大豆共生固氮分子机制研究。E-mail:youningwang@mail.hzau.edu.cn。

更新日期/Last Update: 2019-05-30