HE Rui,WANG Qing-yan,FAN Qi,et al.Effects of Thidiazuron on Soybean Seeds Morphogenesis and Physiological Indexes of Nitrogen Metabolism[J].Soybean Science,2022,41(06):718-725.[doi:10.11861/j.issn.1000-9841.2022.06.0718]
噻苯隆对大豆籽粒建成和氮代谢生理指标的影响
- Title:
- Effects of Thidiazuron on Soybean Seeds Morphogenesis and Physiological Indexes of Nitrogen Metabolism
- Keywords:
- thidiazuron; soybean; seeds formation; nitrogen metabolism; yield
- 文献标志码:
- A
- 摘要:
- 为探究植物生长调节剂噻苯隆(Thidiazuron)对大豆籽粒建成及氮代谢的影响,本研究以大豆品种东农豆252为材料,在盆栽条件下,设置盛花期喷施不同浓度(0.2,1.0和5.0 mg·L-1)噻苯隆处理,测定不同浓度处理下的大豆单株产量、籽粒形态、氮代谢关键酶活性、可溶性蛋白含量和氨基酸含量,并分析噻苯隆对大豆氮素代谢和籽粒建成的影响。结果表明:噻苯隆处理可显著提高大豆单株籽粒产量,0.2,1.0和5.0 mg· L-1处理分别比对照显著提高14.28%、14.89%和14.29%。噻苯隆处理对大豆单株产量的提高,一方面归因于单株荚数的增加;另一方面归因于粒重的提高,处理后45 d,0.2,1.0和5.0 mg·L-1处理籽粒干重分别比对照显著提高11.15%、11.51%和10.08%。对于氮素代谢,0.2~1.0 mg·L-1噻苯隆处理,一方面可提高大豆叶片氮代谢关键酶活性,促进籽粒形成前期(噻苯隆处理后9~18 d)叶片可溶性蛋白和游离氨基酸的积累;另一方面可促进氮素由叶片向籽粒的转运,籽粒形成后期(处理后36~45 d)大豆叶片游离氨基酸含量比对照显著降低;进而提高籽粒氮素代谢水平,籽粒氮素代谢关键酶活性提高,籽粒可溶性蛋白和游离氨基酸积累增加。综上,噻苯隆处理可以促进大豆叶片氮素代谢,强化氮素向籽粒的转运和积累,提高大豆籽粒干重,达到增产效果。其中0.2~1.0 mg·L-1浓度范围的噻苯隆处理效果较佳。
- Abstract:
- To explore the effects of plant growth regulator thidiazuron on soybean seeds formation and nitrogen metabolism, the effects of plant growth regulator thidiazuron on soybean seeds formation and nitrogen metabolism were explored in this study. Soybean cultivar Dongnongdou 252 was used as the material. The different concentrations (0.2, 1.0 and 5.0 mg·L-1) of thidiazuron were sprayed on the foliar surface under pot conditions. Soybean yield, seed shape, key enzyme activities of nitrogen metabolism, soluble protein content and amino acid content were measured. The results showed that thidiazuron treatment significantly increased the soybean seeds yield per plant, and the treatments of 0.2, 1.0 and 5.0 mg·L-1 significantly increased by 14.28%, 14.89% and 14.29% compared with the control, respectively. The improvement of soybean yield per plant of thidiazuron treatment was attributed to the increase of the pods number per plant on the one hand, and the increase of seeds weight on the other hand. At 45 d after treatment, the dry weight of seeds in the treatments of 0.2, 1.0 and 5.0 mg·L-1 increased significantly by 11.15%, 11.51% and 10.08%, respectively, compared with the control. In terms of nitrogen metabolism, thidiazuron treatment, especially 0.2-1.0 mg·L-1 concentration treatments, on the one hand, improved the activity of key enzymes in nitrogen metabolism in soybean leaves and promoted the early stage of seeds formation (9-18 d after thidiazuron treatment), accumulation of soluble protein and free amino acids in leaves. On the other hand, the transfer of nitrogen from leaves to seeds was promoted, and the free amino acid content of soybean leaves at the later stage of seeds formation (36-45 d after treatment) was significantly lower than that of the control. In turn, the level of seed nitrogen metabolism was improved, the activity of key enzymes in seed nitrogen metabolism was increased, and the accumulation of seed soluble protein and free amino acids were increased. In conclusion, thidiazuron treatment can improve soybean leaf nitrogen metabolism, promote nitrogen transfer to seeds and accumulate, increase soybean seeds dry weight, and achieve the effect of yield increasing. Among them, the treatment effect of thidiazuron in the concentration range of 0.2-1.0 mg·L-1 was the best.
参考文献/References:
[1]赵勇, 司伟, 田国强, 等. 大豆生产及市场动态监测报告[J]. 大豆科技, 2018(4): 12-21. (ZHAO Y, SI W, TIAN G Q, et al. Soybean production and market dynamic monitoring report [J]. Soybean Science and Technology, 2018(4): 12-21.)[2]SAITO 〖KG(0.2mmA, TANABATA S. Effect of nitrate on nodule and root growth of soybean (Glycine max (L.) Merr.)[J]. International Journal of Molecular Sciences, 2014,15(3): 4464-4480. [3]WEI S, WANG X, SHI D, et al. The mechanisms of low nitrogen induced weakened photosynthesis in summer maize (Zea mays L.) under field conditions[J]. Plant Physiology and Biochemistry, 2016, 20(105): 118-128.[4]崔毅, 蒋尚明, 金菊良, 等. 基于水分亏缺试验的大豆旱灾损失敏感性评估[J]. 水力发电学报, 2017, 36(11): 50-61. (CUI Y, JIANG S M, JIN J L, et al. Assessment of drought loss sensitivity of soybean based on water deficit test[J]. Journal of Hydraulic Engineering, 2017, 36(11): 50-61.)[5]董守坤. 大豆吸收利用氮素规律及相关酶活性研究[D]. 哈尔滨: 东北农业大学, 2008. (DONG S K. Study on the law of soybean absorption and utilization of nitrogen and related enzyme activities[D]. Harbin: Northeast Agricultural University, 2008.)[6]RANATHUNGE K, EL-KEREAMY A, GIDDA S, et al. AMT11 transgenic rice plants with enhanced NH+4 permeability show superior growth and higher yield under optimal and suboptimal NH+4 conditions[J]. Journal of Experimental Botany, 2014, 65(4): 965-979.[7]姚玉波, 张树权, 柴永山, 等. 不同生育期大豆品种氮素积累特性研究[J]. 中国土壤与肥料, 2021(5): 169-175. (YAO Y B, ZHANG S Q, CHAI Y S, et al. Nitrogen accumulation characteristics of soybean varieties at different growth stages[J]. China Soil and Fertilizer, 2021(5): 169-175.)[8]杜艳丽. 水分胁迫对大豆生长和籽粒性状的影响机制研究[D]. 沈阳: 沈阳农业大学, 2020. (DU Y L. Effects of water stress on growth and grain traits of soybean[D]. Shenyang: Shenyang Agricultural University, 2020.)[9]ANKET 〖KG(0.4mmSHARMA, BINGSONG ZHENG. Molecular responses during plant grafting and its regulation by auxins, cytokinins, and gibberellins[J]. Biomolecules, 2019, 9(9): 397.[10]GUPTA S, MAO A A, SARMA S. Effects of Thidiazuron (TDZ) on direct shoot organogenesis of Gymnocladus assamicus: A threatened and critically endangered species from northeast India[J]. National Academy Science Letters, 2019, 43(1): 85-91.[11]PASA M S, SILVA C P, CARRA B, et al. Thidiazuron (TDZ) increases fruit set and yield of ‘Hosui’ and ‘Packham′s Triumph’ pear trees[J]. Anais da Academia Brasileria de Ciencias, 2017, 89(4): 3103-3110.[12]王小纯, 熊淑萍, 马新明, 等. 不同形态氮素对专用型小麦花后氮代谢关键酶活性及子粒蛋白质含量的影响[J]. 生态学报, 2005, 25(4): 802-807. (WANG X C, XIONG S P, MA X M, et al. Effects of different nitrogen forms on key enzyme activities of nitrogen metabolism and grain protein content in wheat[J]. Acta Ecologica Sinica, 2005, 25(4): 802-807.)[13]徐亚会, 董守坤, 李雪凝, 等. 干旱胁迫对春大豆氮代谢关键酶活性的影响[J].核农学报, 2016, 30(1): 164-170. (XU Y H, DONG S K, LI X N, et al. Effects of drought stress on the activities of key enzymes in nitrogen metabolism in spring soybean[J]. Chinese Journal of Nuclear Agronomy, 2016, 30(1): 164-170.)[14]邹琦. 植物生理生化实验指导[M]. 北京:中国农业出版社, 1995. (ZOU Q. Plant physiological and biochemical experiment guide[M]. Beijing: China Agricultural Press, 1995.)[15]BRADFORD 〖KG(0.7mmM M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1): 248-254.[16]王华美, 任春元, 金喜军, 等. 外源褪黑素对高氮下大豆氮代谢及生长发育的影响[J]. 中国油料作物学报, 2021, 43(5): 872-882. (WANG H M, REN C Y, JIN X J, et al. Effects of exogenous melatonin on nitrogen metabolism and growth and development of soybean under high nitrogen[J]. Chinese Journal of Oil Crops, 2021, 43(5): 872-882.) [17]刘业丽, 刘丽君, 栾怀海, 等. 不同基因型大豆GS活性动态规律研究[J]. 黑龙江农业科学, 2011, 10(12): 10-13. (LIU Y L, LIU L J, LUAN H H, et al. Dynamics of GS activity in different genotypes of soybean[J]. Heilongjiang Agricultural Sciences, 2011, 10(12): 10-13.)[18]陈丽华, 李杰, 刘丽君, 等. 大豆蛋白质的积累动态及其与产质量形成的关系[J]. 东北农业大学学报, 2002, 10(2): 116-124. (CHEN L H, LI J, LIU L J, et al. Protein accumulation dynamics and its relationship with yield and quality formation of soybean[J]. Journal of Northeast Agricultural University, 2002, 10(2): 116-124.)[19]王华美. 不同氮水平下外源褪黑素对大豆生长及氮同化能力的影响[D]. 大庆: 黑龙江八一农垦大学, 2021. (WANG H M. Effects of exogenous melatonin on soybean growth and nitrogen assimilation ability under different nitrogen levels[D]. Daqing: Heilongjiang Bayi Agricultural University, 2021.)[20]ZHOU W G, CHEN F, ZHAO S H, et al. DA-6 promotes germination and seedling establishment from aged soybean seeds by mediating fatty acid metabolism and glycometabolism[J]. Journal of Experimental Botany, 2019, 70(1): 101-114. [21]符小文, 徐文修, 李亚杰, 等. 施氮量对夏大豆干物质积累、转运规律及产量的影响[J]. 国农学通报, 2019, 35(35): 79-86. (FU X W, XU W X, LI Y J, et al. Effects of nitrogen application rate on dry matter accumulation, transport law and yield of summer soybean[J]. Bulletin of National Agronomy, 2019, 35(35): 79-86.)[22]FANG S, GAO K,HU W, et al. Foliar and seed application of plant growth regulators affects cotton yield by altering leaf physiology and floral bud carbohydrate accumulation[J]. Field Crops Research, 2019, 2(31): 105-114.[23]梁喜龙, 邱凯华, 何瑞, 等. 植物籽粒建成的调控与细胞分裂素[J]. 植物生理学报, 2020, 56(4): 635-642. (LIANG X L, QIU K H, HE R, et al. The regulation of plant grain formation and cytokinins[J]. Chinese Journal of Plant Physiology, 2020, 56(4): 635-642.)[24]刘晓双, 顾万荣, 朴琳, 等.噻苯隆-乙烯利复配对春玉米籽粒灌浆特性的影响及其激素调控机理[J].生态学杂志,2017,36(12): 3526-3534. (LIU X S, GU W R, PU L, et al. Thidiazuron-ethephon pairing effect on grain filling characteristics of spring maize and its hormone regulation mechanism[J]. Chinese Journal of Ecology, 2017, 36(12): 3526-3534.) [25]张睿. 局部施氮和根施6-BA对平邑甜茶幼苗生长及氮代谢的调控[D]. 泰安:山东农业大学, 2020. (ZHANG R. Regulation of local nitrogen application and root application of 6-BA on the growth and nitrogen metabolism of Pingyi sweet tea seedlings[D]. Tai′an: Shandong Agricultural University, 2020.)[26]肖郁绵. 植物生长调节剂对换锦花等石蒜属植物小鳞茎发育影响的研究[D]. 杭州: 浙江大学, 2013. (XIAO Y M. Research on the effect of plant growth regulators on the development of small bulbs of Lycoris genus such as Huajinhua[D]. Hangzhou: Zhejiang University, 2013.)[27]李彦生. 菜用大豆食用品质形成及调控研究[D]. 哈尔滨:中国科学院研究生院(东北地理与农业生态研究所), 2013. (LI Y S. Research on the formation and regulation of edible quality of vegetable soybean[D]. Harbin: Graduate School of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology), 2013.)[28]李小艳, 许晅, 朱同生, 等. 细胞分裂素对玉米产量性状的影响[J]. 中国农学通报, 2013, 29(36): 219-223. (LI X Y, XU H, ZHU T S, et al. Effects of cytokinins on corn yield traits[J]. China Agricultural Science Bulletin, 2013, 29(36): 219-223.)[29]陈洁. 细胞分裂素对植物生长发育的影响[J]. 现代园艺, 2012(14): 14.(CHEN J. Effects of cytokinins on plant growth and development[J]. Modern Horticulture, 2012(14): 14.)
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(06):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(06):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(06):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(06):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(06):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(06):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(06):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(06):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(06):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(06):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
备注/Memo
收稿日期:2022-05-03