SAN Yu,WANG Yan,YAO Xing-zhou,et al.Effects of Simulated Nitrogen Deposition on Dry Matter Accumulation and Nitrogen Metabolism in Soybean Leaves[J].Soybean Science,2022,41(06):710-717.[doi:10.11861/j.issn.1000-9841.2022.06.0710]
模拟氮沉降对大豆干物质积累及叶片氮代谢的影响。
- Title:
- Effects of Simulated Nitrogen Deposition on Dry Matter Accumulation and Nitrogen Metabolism in Soybean Leaves
- Keywords:
- nitrogen deposition; soybean; accumulation of dry matter; nitrogen metabolism; yield; quality
- 文献标志码:
- A
- 摘要:
- 摘要:为探究全球氮沉降持续增加对大豆干物质积累和氮代谢的影响,本研究以栽培大豆铁丰29号为材料,设置对照处理(不施氮)以及在种植前施氮50 kg·hm-2基肥(模拟实际农田施氮量)的基础上设氮沉降处理(0,50,100,150 kg·hm-2),探讨了氮沉降对大豆干物质积累、叶片氮代谢相关指标(硝酸还原酶、谷氨酰胺合成酶、谷氨酸脱氢酶、硝态氮、铵态氮和可溶性蛋白)、产量和品质的影响。结果表明:人为施氮肥结合少量氮沉降能够保证大豆有效氮供应,显著促进了大豆干物质积累,显著提高了叶片氮代谢产物含量及关键酶活性,进而增加了大豆产量和品质。在施基肥50 kg·hm-2条件下,氮沉降量超过50 kg·hm-2时,则对大豆干物质积累、硝酸还原酶活性、硝态氮和可溶性蛋白含量有明显的抑制作用。氮沉降量超过100 kg·hm-2时,会明显降低大豆谷氨酰胺合成酶和谷氨酸脱氢酶活性以及铵态氮含量。综合分析认为,氮沉降可以作为氮素资源促进大豆生长,氮沉降浓度持续升高条件下农田施肥可能抑制大豆干物质积累和氮代谢,导致减产。应在考虑各地区氮沉降量的基础上合理施用氮肥
- Abstract:
- To explore the effects of the continuous increase of global nitrogen deposition on soybean dry matter accumulation and nitrogen metabolism, this study took the cultivated soybean Tiefeng 29 as the material, and set the control treatment (no nitrogen application) and the nitrogen deposition treatment (0, 50, 100 and 150 kg·ha-1) on the basis of applying N50 kg·ha-1 base fertilizer (simulating the actual nitrogen application rate in farmland) before planting. We discussed the effects of nitrogen deposition on dry matter accumulation, related indexes of leaf nitrogen metabolism (nitrate reductase, glutamine synthase, glutamate dehydrogenase, nitrate nitrogen, ammonium nitrogen and soluble protein) and yield and quality of soybean. The results showed as follows: The application of nitrogen fertilizer could significantly improve the yield of soybean leaves. When the nitrogen deposition was more than 50 kg·ha-1, the dry matter accumulation, nitrate reductase activity, nitrate nitrogen and soluble protein content of soybean were significantly inhibited. When the nitrogen deposition exceeded 100 kg·ha-1, the activities of glutamine synthase and glutamate dehydrogenase and the content of ammonium nitrogen in soybean would significantly reduce. The comprehensive analysis shows that nitrogen deposition can be used as a nitrogen resource to promote the growth of soybean. Under the condition of continuous increase of nitrogen deposition concentration, farmland fertilization may inhibit soybean dry matter accumulation and nitrogen metabolism, resulting in yield reduction. Nitrogen fertilizer should be applied reasonably on the basis of considering the amount of nitrogen deposition in different regions.
参考文献/References:
[1]马鹏宇, 张红光, 昝鹏, 等. 长期氮添加对东北地区兴安落叶松人工林土壤酶的影响[J]. 植物研究, 2019, 39(4): 598-603. (MA P Y, ZHANG H G, ZAN P, et al. Effects of long-term nitrogen addition on soil enzymes of Larix gmelini plantation in Northeast China[J]. Plant Research, 2019, 39(4): 598-603.)[2]ZHU J X, WANG Q F, HE N P, et al. Imbalanced atmospheric nitrogen and phosphorus depositions in China: Implications for nutrient limitation[J]. Journal of Geophysical Research Biogeosciences, 2016, 121: 1605-1616.[3]KANAKIDOU M, MYRIOKEFALITAKIS S, DASKALAKIS N, et al. Past, present and future atmospheric nitrogen deposition[J]. Journal of the Atmospheric Science, 2016, 73: 2039-2047.[4]陈勇, 刘雨晖, 刘春华, 等. 亚热带常绿阔叶天然林凋落物动态对短期氮沉降的响应(简报)[J]. 亚热带资源与环境学报, 2020, 15(3): 91-95. (CHEN Y, LIU Y H,LIU C H, et al. Response of litter dynamics to short-term nitrogen deposition in subtropical evergreen broad-leaved natural forest (brief report) [J]. Journal of Subtropical Resources and Environment, 2020, 15(3): 91-95.)[5]XIA J Y, WAN S Q. Global response patterns of terrestrial plant species to nitrogen addition[J]. The New Phytologist, 2008, 179: 428-439.[6]PAYNE R J, DISE N B, FIELD C D, et al. Nitrogen deposition and plant biodiversity: Past, present, and future[J]. Frontiers in Ecology and the Environment, 2017, 15: 431-436.[7]DE〖KG(0.25mm VRIES W, DU E Z, BUTTERBACH-BAHL K. Short and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems[J]. Current Opinion in Environmental Sustainability, 2014, 9-10: 90-104.[8]HARPOLE W S, SULLIVAN L L, LIND E M, et al. Addition of multiple limiting resources reduces grassland diversity[J]. Nature, 2016, 537: 93-96.[9]HUMBERT J Y, DWYER J M, ANDREY A, et al. Impacts of nitrogen addition on plant biodiversity in mountain grasslands depend on dose, application duration and climate: A systematic review[J]. Global Change Biology, 2016, 22: 110-120.[10]崔婉莹, 刘思佳, 魏亚伟, 等. 氮添加和水分胁迫对红松、水曲柳幼苗生物量分配的影响[J]. 应用生态学报, 2019, 30(5): 1454-1462. (CUI W Y, LIU S J, WEI Y W, et al. Effects of nitrogen addition and water stress on biomass allocation of Korean pine and manchurian ash seedlings[J]. Journal of Applied Ecology, 2019, 30(5): 1454-1462.)[11]LI W B, JIN C J, GUAN D X, et al. The effects of simulated nitrogen deposition on plant root traits: A meta-analysis[J]. Soil Biology & Biochemistry, 2015, 82: 112-118.[12]BAI Y F, WU J G, CLARK C M, et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from inner Mongolia grasslands[J]. Global Change Biology, 2010, 16: 358-372.[13]候文慧, 张玉霞, 杜晓艳, 等. 氮素水平对科尔沁沙地羊草叶片氮代谢及产量的影响[J]. 草原与草坪, 2021, 41(5): 106-112. (HOU W H, ZHANG Y X, DU X Y, et al. Effects of nitrogen level on leaf nitrogen metabolism and yield of Leymus chinensis in Horqin Sandy Land[J]. Grassland and Turf, 2021, 41(5): 106-112.)[14]杜永成, 王玉波, 范文婷, 等. 不同氮素水平对甜菜硝酸还原酶和亚硝酸还原酶活性的影响[J]. 植物营养与肥料学报, 2012, 18(3): 717-723. (DU Y C, WANG Y B, FAN W T, et al. Effects of different nitrogen levels on nitrate reductase and nitrite reductase activities in Sugarbeet[J]. Journal of Plant Nutrition and Fertilizer, 2012, 18(3): 717-723.)[15]王曙明, 孟凡凡, 郑宇宏, 等. 大豆高产育种研究进展[J]. 中国农学通报, 2010, 26(9): 162-166. (WANG S M,MENG F F,ZHENG Y H, et al. Research progress of soybean high yield breeding [J]. Bulletin of Chinese Agronomy, 2010, 26(9): 162-166.)[16]赵财, 柴强, 乔寅英, 等. 禾豆间距对间作豌豆“氮阻遏”减缓效应的影响[J]. 中国生态农业学报, 2019, 24(9): 1169-1176. (ZHAO C, CHAI Q, QIAO Y Y, et al. The effect of spacing between crops and beans on the mitigation effect of “nitrogen repression” in intercropping pea[J]. Chinese Journal of Ecological Agriculture, 2019, 24(9): 1169-1176.)[17]LA MENZA N C, MONZON J P, SPECHT J E, et al. Nitrogen limitation in high-yield soybean: Seed yield, N accumulation, and N-use efficiency[J]. Field Crops Research, 2019, 237: 74-81.[18]张玉先, 祁倩倩, 罗奥, 等. 锰对大豆氮代谢相关指标及产量品质的影响[J]. 中国油料作物学报, 2009, 31(4): 486-491. (ZHANG Y X, QI Q Q, LUO A, et al. Effects of manganese on soybean nitrogen metabolism, yield and quality[J]. Chinese Journal of Oil Crop Sciences, 2009, 31(4): 486-491.)[19]MO J, LI D, GUNDERSEN P. Seedling growth response of two tropical tree species to nitrogen deposition in southern China[J]. European Journal of Forest Research, 2008, 127: 275-283.[20]遆超普, 颜晓元. 基于氮排放数据的中国大陆大气氮素湿沉降量估算[J]. 农业环境科学学报, 2010, 29(8): 1606-1611. (TI C P,YAN X Y. Estimation of atmospheric nitrogen wet deposition in Chinese mainland based on nitrogen emission data[J]. Journal of Agricultural Environmental Science, 2010, 29(8): 1606-1611.)[21]余景松, 付若仙, 俞元春, 等. 氮沉降对北亚热带麻栎林土壤呼吸及其温湿度敏感性的影响[J]. 生态学杂志, 2021, 40(4): 1029-1037. (YU J S, FU R X,YU Y C, et al. Effects of nitrogen deposition on soil respiration and temperature and humidity sensitivity of Quercus acutissima forest in north subtropical zone[J]. Journal of Ecology, 2021, 40(4): 1029-1037.)[22]张蕊, 王艺, 金国庆, 等. 氮沉降模拟对不同种源木荷幼苗叶片生理及光合特性的影响[J]. 林业科学研究, 2013, 26(2): 207-213. (ZHANG R,WANG Y, JIN G Q, et al. Effects of nitrogen deposition simulation on leaf physiology and photosynthetic characteristics of Schima superba seedlings from different provenances [J]. Forestry Scientific Research, 2013, 26(2): 207-213.)[23]李小方, 张志良. 植物生理学实验指导[M].第5版. 北京: 高等教育出版社, 2016: 32-33,37. (LI X F, ZHANG Z L. Experimental guidance of plant physiology[M]. 5th ed. Beijing: Higher Education Press, 2016: 32-33,37.)[24]邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2003: 125-127. (ZOU Q. Experimental guidance of plant physiology[M]. Beijing: China Agricultural Press, 2003: 125-127.)[25]中国科学院上海植物生理研究所, 上海市植物生理学会. 现代植物生理学实验指南[M]. 北京: 科学出版社, 1999: 156.(Shanghai Institute of Plant Physiology, Chinese Academy of Sciences, Shanghai Society of Plant Physiology. Experimental guide to modern plant physiology[M]. Beijing: Science Press, 1999: 156.)[26]闫艳红, 杨文钰, 张新全, 等. 施氮量对套作大豆花后光合特性、干物质积累及产量的影响[J]. 草业学报, 2011, 20(3): 233-238.( YAN X H,YANG W Y, ZHANG X Q, et al. Effects of nitrogen application rate on photosynthetic characteristics, dry matter accumulation and yield of relay strip intercropping Glycine max after blooming[J]. Journal of Grassland Industry, 2011, 20(3): 233-238.)[27]牟琳, 王岩, 孙铭禹, 等. 近地层臭氧浓度升高对大豆叶片氮代谢及产量的影响[J]. 生态环境学报, 2020, 29(7): 1395-1402.( MU L, WANG Y, SUN M Y, et al. Effects of elevated ozone concentration in the near ground layer on nitrogen metabolism and yield of soybean leaves [J]. Journal of Ecological Environment, 2020, 29(7): 1395-1402.)[28]FAN X H, TANG C, RENGEL Z. Nitrate uptake, nitrate reductase distribution and their relation to proton release in five nodulated grain legumes[J]. Annals of Botany, 2002, 90: 315-323.[29]陈继康, 谭龙涛, 喻春明, 等. 不同氮素水平对饲用苎麻氮代谢关键酶的影响[J]. 草业学报, 2017, 26(10): 207-218. (CHEN J K, TAN L T, YU C M, et al. Effects of different nitrogen levels on key enzymes of nitrogen metabolism in forage ramie[J]. Journal of Grassland Industry, 2017, 26(10): 207-218.)[30]LI Y, YANG X X, REN B B, et al. Why nitrogen use efficiency decreases under high nitrogen supply in rice (Oryza sativa L.) seedlings[J]. Journal of Plant Growth Regulation, 2012, 31: 47-52.[31]白志刚, 张均华, 黄洁, 等. 氮肥运筹对水稻氮代谢及稻田土壤氮素迁移转化的影响[J]. 生态学杂志, 2018, 37(11): 3440-3448. (BAI Z G, ZHANG J H, HUANG J, et al. Effects of nitrogen management on nitrogen metabolism in rice and nitrogen migration and transformation in paddy soil[J]. Journal of Ecology, 2018, 37(11): 3440-3448.)[32]赵春波, 王超楠, 宋述尧, 等. 氮素营养水平对黄瓜氮代谢关键酶活性变化及氮化物的影响[J]. 吉林农业大学学报, 2017, 39(2): 139-147. (ZHAO C B,WANG C N, SONG S Y, et al. Effects of nitrogen nutrition level on the activities of key enzymes of nitrogen metabolism and nitrogen compounds in cucumber[J]. Journal of Jilin Agricultural University, 2017, 39(2): 139-147.)[33]廖道龙, 云天海, 刘子凡, 等. 嫁接和施氮量对冬瓜干物质、氮素积累及其氮代谢酶的影响[J]. 热带作物学报, 2022, 43(3): 572-581. (LIAO D L, YUN T H, LIU Z F, et al. Effects of grafting and nitrogen application on dry matter, nitrogen accumulation and nitrogen metabolism enzymes of winter melon [J]. Journal of Tropical Crops, 2022, 43(3): 572-581.)[34]于铁峰, 刘晓静, 张晓玲, 等. 氮素对紫花苜蓿根茎叶氮含量及硝酸还原酶活性的影响[J]. 草原与草坪, 2017, 37(5): 14-20. (YU T F, LIU X J, ZHANG X L, et al. Effects of nitrogen on nitrogen content and nitrate reductase activity in roots, stems and leaves of alfalfa[J]. Grassland and Turf, 2017, 37(5): 14-20.)[35]SANCHEZ-RODRIGUEZ E, RUBIO-WILHELMI M D, RIOS J J, et al. Ammonia production and assimilation: Its importance as a tolerance mechanism during moderate water deficit in tomato plants[J]. Journal of Plant Physiology, 2011, 168: 816-823.[36]王林学, 杨义, 刘帮银, 等. 施氮量对玉米植株硝态氮含量及产量的影响[J]. 安徽农业科学, 2008(15): 6404-6406,6468. (WANG L X,YANG Y,LIU B Y, et al. Effects of nitrogen application rate on nitrate nitrogen content and yield of maize [J]. Anhui Agricultural Science, 2008(15): 6404-6406,6468.)[37]郭丽, 贾秀领, 张凤路, 等. 定位水氮组合对冀5265小麦叶片硝酸还原酶、可溶性蛋白及产量的影响[J]. 华北农学报, 2010, 25(1): 180-184. (GUO L, JIA X L, ZHANG F L, et al. Effects of localized water and nitrogen combination on nitrate reductase, soluble protein and yield of JI5265 wheat leaves[J]. Huabei Agricultural Journal, 2010, 25(1): 180-184.)[38]RAY J D, HEATHERLY L G, FRITSCHI F B. Influence of large amounts of nitrogen on nonirrigated and irrigated soybean[J]. Crop Science, 2006, 46: 52-60.[39]BARKER D W, SAWYER J E. Nitrogen application to soybean at early reproductive development[J]. Agronomy Journal, 2005, 97: 615-619.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(06):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(06):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(06):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(06):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(06):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(06):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(06):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(06):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(06):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(06):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
备注/Memo
收稿日期:2022-05-07