GUO Xiao-hong,WEI Qing-yuan,TANG Fu-yue,et al.Screening of High Temperature Tolerant Soybean Germplasms and Evaluation of Heat-tolerant Indexes During Germination Stage[J].Soybean Science,2022,41(05):513-519.[doi:DOI:10.11861/j.issn.1000-9841.2022.05.0513]
萌发期耐高温大豆种质资源筛选及耐热指标评价
- Title:
- Screening of High Temperature Tolerant Soybean Germplasms and Evaluation of Heat-tolerant Indexes During Germination Stage
- Keywords:
- soybean; high temperature stress; germplasm evaluation; seed shape index; specific gravity; bulk density
- 文献标志码:
- A
- 摘要:
- 为筛选萌发期耐高温大豆种质资源,建立高效便捷的耐热评价体系,本研究选用华南地区育成品种和广西壮族自治区积累的主要育种材料(共计1 124份)为研究对象,分别在25和38 ℃温度处理下测定大豆种子的发芽率,以38 ℃/25 ℃的相对发芽率评价了萌发期大豆种质资源的耐热性,探讨了籽粒的形态、比重、容重和品质性状与相对发芽率的相关性并筛选籽粒耐高温性的最适评价指标。结果表明:高温胁迫降低了大豆种质的发芽率,且不同品(系)的发芽率存在显著差异。根据38 ℃/25 ℃的相对发芽率的差异,筛选出78份强耐热种质资源,其中有3份种质资源的相对发芽率为100%,分别为都安青皮豆、南豆35和14夏G8-65。春大豆耐热种质占有率显著高于夏大豆;有色种皮品(系)中耐高温材料占有率高于黄色种皮种质。相关分析表明,大豆萌发期的耐热性与籽粒的粒型指数、表面积、百粒重和蛋白质含量呈极显著负相关,与容重和比重呈极显著正相关。逐步回归和通径分析表明,大豆种质萌发期的耐热性与粒型指数、百粒重、容重和比重的关系最为密切。大豆籽粒的容重和耐热性均与种子的粒型指数和比重极显著正相关,与百粒重极显著负相关,因此籽粒容重较适合作为大豆萌发期耐热性强弱的田间初步评价指标。
- Abstract:
- In order to select the heat-tolerant soybean germplasms and establish efficient and convenient evaluation system during the germination stage. 1 124 varieties(lines) including the released cultivars in South China and main breeding germplasm of Guangxi were selected to test the seed germination rate at 25 and 38 ℃, respectively. Then we used the relative germination rate at 38 ℃/25 ℃ to evaluate the high-temperature tolerance of soybean at germination stage,discussed the correlation between the morphological traits, specific gravity, bulk density, quality traits of seeds and the relative germination rate,and select optimal index for seed heat tolerance screening. The germination rate of soybean decreased at high temperatures, and there was a significant difference in germination rate among different varieties. 78 high heat-tolerant germplasm were screened out by the relative germination rate, and three varieties including Du′anqingpidou, Nandou 35, and 14-Xia-G8-65 had a relative germination rate of 100%. Moreover, the percentage of heat-tolerant germplasm in spring soybean was significantly higher than that of summer soybean, and the percentage of heat-tolerant germplasm in non-yellow seed coats was higher than that of the yellow seed coat.Correlation analysis showed that the heat tolerance of soybean at the germination stage was negatively correlated with seed shape index, surface area, 100-seed weight, and protein content, but significantly positively correlated with bulk density and specific gravity. Stepwise regression and path analysis showed that the heat tolerance of soybean at the germination stage was closely related to the seed shape index, 100-seed weight, bulk density, and specific gravity. The bulk density of soybean seeds was positively correlated with seed shape index and specific gravity, and negatively correlated with 100-seed weight. Therefore, it was suggested that the bulk density could be used as the primary evaluation index for the heat-tolerant soybean germplasm.
参考文献/References:
[1]郝兴宇,韩雪, 居煇,等.气候变化对大豆影响的研究进展[J].应用生态学报, 2010, 21(10): 2697-2706.(HAO X Y, HAN X, JU H, et al. Research progress on the impact of climate change on soybeans[J]. Chinese Journal of Applied Ecology, 2010, 21(10): 2697-2706.)[2]DJANAGUIRAMAN M, PRASAD P V V, BOYLE D L, et al. High temperature stress and soybean leaves: Leaf anatomy and photosynthesis[J]. Crop Science, 2011, 51(5): 2125-2131.[3]DJANAGUIRAMAN M,PRASAD P V V, KHATIB A K. Ethylene perception inhibitor 1-MCP decreases oxidative damage of leaves through enhanced antioxidant defense mechanisms in soybean plants grown under high temperature stress[J]. Environmental and Experimental Botany, 2011, 71(2): 215-223.[4]DJANAGUIRAMAN M, PRASAD P V V, BOYLE D L, et al. Soybean pollen anatomy, viability and pod set under high temperature stress[J]. Journal of Agronomy and Crop Science, 2012, 199(3): 171-177.[5]DJANAGUIRAMAN M, PRASAD P V V, SCHAPAUGH W T. High day or nighttime temperature alters leaf assimilation, reproductive success, and phosphatidic acid of pollen grain in soybean[J]. Crop Science, 2013, 53(4): 1594-1604.[6]HATFIELD J L, EGLI D B. Effect of temperature on the rate of soybean hypocotyl elongation and field emergence[J]. Crop Science, 1974, 14: 423-426.[7]ALM D M, STOLLER E W, WAX L M. An index model for predicting seed germination and emergence rates[J]. Weed Technology, 1993, 7: 560-569.[8]WALLACE S U.Soybean seedling emergence at high temperatures[J]. Plant and Soil, 1988, 109: 139-140.[9]陈立君, 郭强, 刘迎雪, 等. 不同温度对大豆种子萌发影响的研究[J]. 中国农学通报, 2009, 25(10): 140-142.(CHEN L J, GUO Q, LIU Y X, et al. The effect of different temperature on soybean seed germination[J]. Chinese Agricultural Science Bulletin, 2009, 25(10): 140-142.)[10]EMERSON B N, MINOR H C. Response of soybeans to high temperature during germination[J]. Crop Science, 1979, 19: 553-556.[11]宋晓昆, 胡燕金, 闫龙,等. 持续高温对大豆品种萌发及幼苗生长的影响[J]. 河北农业科学, 2009, 13(4): 1-3.(SONG X K, HU Y J, YAN L, et al. Effects of sustained high temperature on the germination and seedling growth of soybean varieties[J]. Hebei Agricultural Sciences, 2009, 13(4): 1-3.)[12]HOU F F, THSENG F S. Studies on the flooding tolerance of soybean seed: Varietal differences[J]. Euphytica, 1991, 57: 169-173.[13]王丽群. 春大豆种子田间劣变抗性的评价及抗性机理的研究[D]. 南京: 南京农业大学, 2012: 25-32.(WANG L Q. Evaluation of field deterioration resistance of spring soybean seeds and research on resistance mechanism [D]. Nanjing: Nanjing Agricultural University, 2012: 25-32.)[14]汪明华, 李佳佳, 陆少奇,等.大豆品种耐高温特性的评价方法及耐高温种质筛选与鉴定[J]. 植物遗传资源学报, 2019, 20(4): 891-902.(WANG M H, LI J J, LU S Q, et al. Evaluation method of high temperature tolerance and screening and identification of high temperature tolerance soybean varieties[J]. Journal of Plant Genetic Resources, 2019, 20(4): 891-902.)[15]靳路真, 王洋, 张伟,等. 大豆品种(系)耐热性鉴定及分级评价[J]. 中国油料作物学报, 2016, 38(1): 77-87.(JIN L Z, WANG Y, ZHANG W, et al. Heat tolerance identification and classification evaluation of soybean varieties[J]. Chinese Journal of Oil Crops, 2016, 38(1): 77-87.)[16]SALEM M A,KAKANI V G,KOTI S,et al. Pollen based screening of soybean genotypes for high temperatures[J]. Crop Science, 2007, 47:219-231.[17]SMITH J R, MENGISTU A, NELSON R L, et al. Identification of soybean accessions with high germinability in high temperature environments[J]. Crop Science, 2008, 48: 2279-2288.[18]陈文杰, 陈渊, 韦清源, 等. 南方大豆种质种子耐浸水能力鉴定与分析[J]. 大豆科学, 2020, 39(2): 165-173.(CHEN W J, CHEN Y, WEI Q Y, et al. Seed-flooding tolerance identification and comparison of soybean germplasm resources in southern China[J]. Soybean Science, 2020, 39(2): 165-173.)[19]高华伟, 满强, 武猛,等. 耐储藏大豆种质资源的筛选[J]. 大豆科学, 2014, 33(1): 6-12.(GAO H W, MAN Q, WU M, et al. Selection of storage-resistant soybean germplasm resources[J]. Soybean Science, 2014, 33(1): 6-12.)[20]刘文博. 大豆籽粒容重与种子萌发的相关性研究[D]. 沈阳: 沈阳农业大学, 2018: 32-44.(LIU W B. Research on the correlation between soybean seed bulk density and seed germination [D]. Shenyang: Shenyang Agricultural University, 2018: 32-44.)[21]PENG S B, HUANG J L, SHEEHY J E, et al. Rice yields decline with higher night temperature from global warming[J]. Proceedings of the National Academy of Sciences, 2004, 101(27): 9971-9975.[22]RODRIGUEZ T O, RODAS F R, OYOO M E,et al. Inverted repeat of chalcone synthase 3-pseudogene is associated with seed coat discoloration in soybean[J]. Crop Science, 2013, 53: 518-523.[23]李泽宇, 李肖白, 陈井生,等. 大豆品种(系)抗大豆胞囊线虫14号生理小种的抗性鉴定研究[J]. 大豆科学, 2014, 33(3): 408-410.(LI Z Y, LI X B, CHEN J S, et al. Identification of resistance of soybean varieties (lines) to race 14 of soybean cyst nematode[J]. Soybean Science, 2014, 33(3): 408-410.)[24]庄炳昌, 岳德荣, 王玉民, 等. 大豆不同品种次生代谢产物及相关酶类含量与抗食心虫的关系[J]. 中国油料, 1992(3): 18-20.(ZHUANG B C, YUE D R, WANG Y M, et al. The relationship between the content of secondary metabolites and related enzymes of different soybean varieties and resistance to heartworm[J]. Chinese Journal of Oil Crops, 1992(3): 18-20.)[25]CAPUTI L, MALNOY M, GOREMYKIN V, et al. A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land[J]. The Plant Journal, 2012, 69: 1030-1042.[26]KOVINICH N, SALEEM A, ARNASON J T, et al. Functional characterization of a UDP-glucose: Flavonoid 3-O-glucosyltransferase from the seed coat of black soybean (Glycine max (L.) Merr.)[J]. Phytochemistry, 2010, 71(12): 1253-1263.[27]DIXON R A, STEELE C L. Flavonoids and isoflavonoids a gold mine for metabolic engineering[J]. Trends in Plant Science, 1999, 4(10): 394-400.[28]HOSTETLER G L, RALSTON R A, SCHWARTZ S J. Flavones: Food sources, bioavailability, metabolism, and bioactivity[J]. Advances in Nutrition, 2017, 8(3): 423-435.[29]王芳, 王丽群, 田鑫,等. 中国南方春大豆收获前后种子劣变的抗性研究[J]. 中国农业科学, 2007, 40(11): 2637-2647.(WANG F, WANG L Q, TIAN X, et al. Pre-harvest and post-harvest seed deterioration resistance of spring soybean germplasm in South China[J]. Scientia Agricultura Sinica, 2007, 40(11): 2637-2647.)[30]牛远, 徐宇, 李广军,等.大豆籽粒大小和粒形的驯化研究[J]. 大豆科学, 2012, 31(4): 522-528.(NIU Y, XU Y, LI G J, et al. Domestication of soybean seed size and shape[J]. Soybean Science, 2012, 31(4): 522-528.)[31]HOPPER N W, OVERHOLT J R, MARTIN J R. Effect of cultivar, temperature and seed size on the germination and emergence of soybeans[J]. Annals of Botany, 1979, 44: 301-308.[32]TYAGI S K, TRIPATHI R P. Effect of temperature on soybean germination[J]. Plant and Soil, 1983, 74: 273-280.[33]吕世霖, 程舜华. 大豆籽粒性状生态分布与遗传育种[J]. 大豆科学, 1984, 3(3): 201-207.(LYU S L, CHENG S H. Ecological distribution and genetic breeding of soybean seed traits[J]. Soybean Science, 1984, 3(3): 201-207.)[34]刘学义. 大豆抗旱性评价方法探讨[J]. 中国油料, 1986(4): 12-16.(LIU X Y. Discussion on evaluation methods of soybean drought resistance[J]. Chinese Journal of Oil Crops, 1986(4): 12-16.)[35]刘捷湘. 水稻不育系种子比重分级对其种子活力和群体特性的影响[D]. 长沙: 湖南农业大学, 2014: 10-16.(LIU J X. The effect of seed density classification of rice sterile lines on seed vigor and population characteristics [D]. Changsha: Hunan Agricultural University, 2014: 10-16.)[36]TUPPER G R, KUNZE O R, WIKES L H. Physical characteristics of cotton seed related to seedling vigor and design parameters for seed selection[J]. Transactions of the Asae, 1971, 14: 890-893.[37]DANIEL J H, GAMBLE E E. Field performance in soybean with seeds of differing size and density[J]. Crop Science, 1987, 27: 121-126.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(05):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(05):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(05):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(05):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(05):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(05):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(05):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(05):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(05):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(05):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]谢云灿,何孝磊,杜鹏,等.外源油菜素内酯对高温胁迫下大豆光合特性及产量品质的影响[J].大豆科学,2017,36(02):237.[doi:10.11861/j.issn.1000-9841.2017.02.0237]
XIE Yuncan,HE Xiaolei,DU peng,et al.Effect of Heat Acclimation and EBR on Photosynthesis Characteristics in Leaves of Soybean Flowering Stage, Yield and Quality Maturation Stage[J].Soybean Science,2017,36(05):237.[doi:10.11861/j.issn.1000-9841.2017.02.0237]
[12]靳路真,王洋,张伟,等.高温胁迫对不同耐性大豆品种生理生化的影响[J].大豆科学,2019,38(01):63.[doi:10.11861/j.issn.1000-9841.2019.01.0063]
JIN Lu-zhen,WANG Yang,ZHANG Wei,et al.Effects of High Temperature Stress on Physiological and Biochemical Traits of Soybeans with Different Heat Tolerance[J].Soybean Science,2019,38(05):63.[doi:10.11861/j.issn.1000-9841.2019.01.0063]
[13]张 军,翟 莹,邱 爽,等.大豆GmGolS基因高温胁迫应答及启动子活性分析[J].大豆科学,2023,42(02):188.[doi:10.11861/j.issn.1000-9841.2023.02.0188]
备注/Memo
收稿日期:2022-02-27