SUN Ming-yu,WANG Yan,FAN Ren-xue,et al.Comparison of Photosynthetic Capacity and Light Response Curve Models of Soybean Under Elevated Ozone Concentration[J].Soybean Science,2021,40(04):497-503.[doi:10.11861/j.issn.1000-9841.2021.04.0497]
臭氧浓度升高条件下大豆光合能力变化及光响应曲线的拟合模型比较
- Title:
- Comparison of Photosynthetic Capacity and Light Response Curve Models of Soybean Under Elevated Ozone Concentration
- 文献标志码:
- A
- 摘要:
- 为研究臭氧(O3)浓度升高条件下大豆叶片光合能力、光响应曲线的变化以及光响应曲线拟合模型的适用性,以铁丰29为试验材料,于开顶式气室(OTCs)内进行盆栽试验,设置3个O3浓度(CK: 45 nL·L-1,T1: 80±10 nL·L-1,T2:120±10 nL·L-1)熏蒸大豆,测量气体交换参数,使用非直角双曲线模型(NRH)、直角双曲线模型(RH)、修正直角双曲线模型(MRH)以及指数模型(EM)4种光响应曲线拟合模型,计算光合参数,并分析比较4种光响应曲线模型的拟合效果。结果表明:O3浓度升高显著降低了大豆叶片的最大净光合速率(Pmax)、表观量子效率(AQE)、气孔导度(Gs)、蒸腾速率(Tr)、胞间CO2浓度(Ci)和水分利用效率(WUE),提高了光补偿点(LCP),光饱和点(LSP)无明显变化,高浓度O3未对大豆叶片的强光利用能力以及暗呼吸速率(Rd)产生影响。各模型下光响应参数拟合结果显示,修正的直角双曲线模型(MRH)拟合效果较好,但高浓度O3条件下拟合光饱和点(LSP)时,MRH模型拟合效果较差,而指数模型(EM)拟合效果较好。综上所述,O3浓度升高显著降低了大豆叶片的光合能力,在进行光响应曲线拟合时,选择MRH模型较好,其次为EM模型。
- Abstract:
-
?In order to study the changes of photosynthetic capacity and light response curve of soybean leaves and the applicability of light response curve fitting model under the condition of elevated ozone (O3) concentration, a pot experiment was conducted in open top chambers (OTCs) with Tiefeng 29 as experimental material. Three O3 concentrations (CK: 45 nL·L-1,T1: 80±10 nL·L-1, T2: 120±10 nL·L-1) were set to fumigate soybean, and the air pressure was measured. We used four light response curve fitting models including non right angle hyperbolic model (NRH), right angle hyperbolic model (RH), modified right angle hyperbolic model (MRH) and exponential model (EM) to calculate the photosynthetic parameters, furthermore analyzed and compared the fitting effects of the four light response curve models. The results showed that the maximum net photosynthetic rate (Pmax), apparent quantum efficiency (AQE), stomatal conductance (Gs), transpiration rate (Tr), intercellular CO2 concentration (Ci) and water use efficiency (WUE) of soybean leaves were significantly decreased, and the light compensation point (LCP) and light saturation point (LSP) of soybean leaves were not significantly changed with the increase of O3 concentration. The ability of respiration and the rate of dark respiration (Rd) were affected. The fitting results of light response parameters under each model showed that the modified right angle hyperbolic model (MRH) had better fitting effect, but the fitting effect of MRH model was poor when fitting light saturation point (LSP) was under high O3 concentration, while the fitting effect of?
参考文献/References:
[1]Al-Salihi A M, Hassan Z M. Temporal and spatial variability and trend investigation of total ozone column over Iraq employing remote sensing data: 1979—2012[J]. International Letters of Chemistry, Physics and Astronomy, 2015, 53: 1-18.[2]Sigmond M, Fyfe J C. The antarctic sea ice response to the ozone hole in climate models[J]. Journal of Climate, 2014, 27(3): 1336-1342.[3]马明亮.对流层臭氧时空分析影响因素研究及近地面臭氧估算[D].上海:华东师范大学,2019.(Ma M L. Influencing factors of tropospheric ozone spatiotemporal analysis and near surface ozone estimation[D]. Shanghai: East China Normal University,2019.)[4]Lou S, Liao H, Yang Y, et al. Simulation of the interannual variations of tropospheric ozone over China: Roles of variations in meteorological parameters and anthropogenic emissions[J]. Atmospheric Environment, 2015, 122: 839-851.[5]万凌峰.夏季北半球平流层臭氧对太阳紫外准 11 年循环的响应及机制[D].南京: 南京信息工程大学, 2016.(Wan L F.Response and mechanism of stratospheric ozone in the northern hemisphere to solar ultraviolet quasi 11 year cycle in summer[D]. Nanjing: Nanjing University of Information Engineering,2016.)[6]Xin Y, Yuan X, Shang B, et al. Moderate drought did not affect the effectiveness of ethylenediurea (EDU) in protecting Populus cathayana from ambient ozone[J]. Science of the Total Environment, 2016, 569:1536-1544.[7]王红蕾.黑龙江省大豆产业振兴发展路径分析[J].黑龙江农业科学,2019(10):103-106. (Wang H L. Analysis on the development path of soybean industry in Heilongjiang Province[J].Heilongjiang Agricultural Sciences,2019(10):103-106.)[8]曾小艳,祁华清,邓义,等.农业农村部《大豆振兴计划实施方案》解读[J].农村经济与科技,2020,31(18):36-37.(Zeng X Y, Qi H Q, Deng Y, et al.Interpretation of "Implementation Plan of Soybean Revitalization Plan" of Ministry of Agriculture and Rural Areas[J].Rural Economy and Science and Technology,2020,31(18):36-37.)[9]金东艳,赵天宏,付宇,等.臭氧浓度升高对大豆光合作用及产量的影响[J].大豆科学,2009,28(4):632-635.(Jin D Y, Zhao T H, Fu Y, et al.Effects of elevated ozone concentration on photosynthesis and yield of soybean[J].Soybean Science,2009,28(4):632-635.)[10]张凯,冯起,王润元,等.CO2浓度升高对春小麦灌浆特性及产量的影响[J].中国农学通报,2014,30(3):189-195.(Zhang K,Feng Q, Wang R Y, et al.Effects of elevated CO2 concentration on grain filling characteristics and yield of spring wheat[J].Chinese Agronomy Bulletin, 2014,30 (3): 189-195.)[11]Baly E C C. The kinetics of photosynthesis[J]. Proceedings of the Royal Society of London Series B(Biological Sciences),1935,117:218-239.[12]Lewis J D, Olsyzk D, Tingey D T. Seasonal patterns of photosynthetic light response in Douglas- fir seedlings subjected to elevated atmospheric CO2 and temperature[J].Tree Physiology,1999,19:243-252.[13]Watling J R, Press M C, Quick W P. Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C4 cereal sorghum[J]. Plant Physiology, 2000,3:1143-1152.[14]叶子飘.光响应模型在超级杂交稻组合-优明86中的应用[J].生态学杂志,2007,26(8):1323-1326.(Ye Z P. Application of light response model in super hybrid rice combination-Ⅱ Youming 86 [J]. Journal of Ecology, 2007,26(8): 1323-1326.)[15]叶子飘,于强.一个光合作用光响应新模型与传统模型的比较[J].沈阳农业大学学报,2007,38(6):771-775.(Ye Z P,Yu Q.A comparison between a new photosynthetic response model and a traditional one [J]. Journal of Shenyang Agricultural University, 2007,38(6): 771-775.)[16]王欢利,曹福亮,刘新亮.高温胁迫下不同叶色银杏嫁接苗光响应曲线的拟合[J].南京林业大学学报(自然科学版),2015,39(2) :14-20.(Wang H L, Cao F L, Liu X L. Fitting of light response curve of grafted Ginkgo biloba seedlings with different leaf color under high temperature stress[J].Journal of Nanjing Forestry University(Natural Science Edition),2015,39(2) :14-20.)[17]杨阳,马绎皓,王润元,等.干旱胁迫下半干旱雨养区春小麦光响应曲线的拟合[J].中国农学通报,2020,36(29):15-21.(Yang Y,Ma Z H,Wang R Y, et al.Fitting of light response curve of spring wheat in semi arid rain fed area under drought stress[J].Chinese Agronomy Bulletin,2020,36(29):15-21.)[18]朱惠玲,李丹,贺玉玉,等.水分胁迫对梨枣光合特性的影响[J].延安大学学报(自然科学版),2019,38(4):72-75,79.(Zhu H L,Li D,He Y Y, et al. Effects of water stress on photosynthetic characteristics of Zizyphus jujuba[J].Journal of Yan′an University (Natural Science Edition),2019,38(4):72-75,79.)[19]张铭,王岩,赵天宏,等.臭氧浓度升高条件下秸秆还田对大豆光合荧光特性及产量的影响[J].大豆科学,2019,38(5):754-761.(Zhang M,Wang Y,Zhao T H, et al.Effects of straw returning on photosynthetic fluorescence characteristics and yield of soybean under elevated ozone concentration [J]. Soybean Science, 2019,38 (5): 754-761.)[20]王满莲,冯玉龙,李新.紫茎泽兰和飞机草的形态和光合特性对磷营养的响应[J].应用生态学报,2006,17(4):4602-4606.(Wang M L,Feng Y L,Li X.Response of morphological and photosynthetic characteristics of Eupatorium adenophorum and Eupatorium odoratum to phosphorus nutrition [J]. Journal of Applied Ecology, 2006,17 (4): 4602-4606.)[21]黄红英,窦新永,孙蓓育,等.两种不同生态型麻疯树夏季光合特性的比较[J].生态学报,2009,29(6):2861-2867.(Huang H Y,Dou X Y,Sun B Y et al.Comparison of photosynthetic characteristics of two different ecotypes of Jatropha curcas in summer [J]. Acta Ecologica Sinica, 2009,29 (6): 2861-2867.)[22]叶子飘,李进省.光合作用对光响应的直角双曲线修正模型和非直角双曲线模型的对比研究[J].井冈山大学学报(自然科学版),2010,31(3):38-44.(Ye Z P, Li J S.Comparative study on right angle hyperbolic model and non right angle hyperbolic model of photosynthesis response to light [J]. Journal of Jinggangshan University (Natural Science Edition), 2010,31 (3): 38-44.)[23]肖丹丹,左力辉,王进茂,等.5种榆属植物光响应曲线模型对比分析[J].中国农业科技导报,2016,18(4):124-131.(Xiao D D, Zuo L H,Wang J M, et al.Comparative analysis of light response curve models of five Ulmus species [J]. China Agricultural Science and Technology Guide, 2016,18 (4): 124-131.)[24]李仕杰,朱润军,杨巧,等.不同生境下木棉幼苗光响应特性及最适模型拟合[J].西部林业科学,2020,49(5):149-154.(Li S J, Zhu R J, Yang Q, et al.Light response characteristics and optimal model fitting of kapok seedlings in different habitats [J]. Western Forestry Science, 2020,49 (5): 149-154.)
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(04):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(04):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(04):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(04):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(04):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(04):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(04):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(04):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(04):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(04):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]王春雨,谢志煌,李彦生,等.近地表臭氧浓度升高对不同东北品种大豆产量形成及品质的影响[J].大豆科学,2019,38(03):385.[doi:10.11861/j.issn.1000-9841.2019.03.0385]
WANG Chun-yu,XIE Zhi-huang,LI Yan-sheng,et al.Effects of Elevated Surface O3 on Soybean Yield Formation and Seed Quality in Different Northeast Cultivars[J].Soybean Science,2019,38(04):385.[doi:10.11861/j.issn.1000-9841.2019.03.0385]
[12]张铭,王岩,赵天宏,等.臭氧浓度升高条件下秸秆还田对大豆光合荧光特性及产量的影响[J].大豆科学,2019,38(05):754.[doi:10.11861/j.issn.1000-9841.2019.05.0754]
ZHANG Ming,WANG Yan,ZHAO Tian-hong,et al.Effects of Straw Returning on Photosynthetic Fluorescence Characteristics and Yield of Soybean Under Elevated Ozone Concentration[J].Soybean Science,2019,38(04):754.[doi:10.11861/j.issn.1000-9841.2019.05.0754]
备注/Memo
收稿日期:2021-01-10