ZHANG Ye,ZHANG Han-zhu,DU Ye-yao,et al.Physiological and Biochemical Responses of GmXTH1 Overexpression Soybean to Drought Stress at Seedling Stage[J].Soybean Science,2021,40(03):327-333.[doi:10.11861/j.issn.1000-9841.2021.03.0327]
过表达GmXTH1基因大豆对干旱胁迫的生理生化响应
- Title:
- Physiological and Biochemical Responses of GmXTH1 Overexpression Soybean to Drought Stress at Seedling Stage
- Keywords:
- Soybean; Drought stress; GmXTH1; Overexpression; Interference expression; Physiology and biochemistry
- 文献标志码:
- A
- 摘要:
- 为研究GmXTH基因对干旱胁迫大豆苗期表型和生理生化特征的影响,以转基因受体大豆品种M18、GmXTH1过表达转基因株系OEA1和OEA2、GmXTH1干扰表达转基因株系IEA1和IEA2为试验材料,采用盆栽法,设置3种不同水分处理,对苗期不同转化株系的表型、RWC、SOD活性、POD活性和MDA含量进行测定。结果表明:随干旱胁迫程度增加,不同转化株系的RWC相对降低,SOD和POD活性先增加后减少,MDA含量增加。相同干旱胁迫条件下,与对照品种M18相比,转GmXTH1基因过表达材料OEA1和OEA2的RWC较高,SOD和POD活性相对较高,响应速度较快,MDA含量较低,增长率相对较低,叶色浓绿、茎秆粗壮和株型整体表现较好,胁迫后复水恢复快。GmXTH1基因干扰表达材料IEA1和IEA2的表现则相反,植株受干旱胁迫后,整体表现为叶片萎蔫,茎秆枯细,株型整体表现较差,RWC、SOD和POD活性相对较低,响应速度较慢。说明GmXTH1基因的过量表达对与大豆植株抗旱相关的生理生化指标有积极影响,GmXTH1基因可能参与大豆的抗旱应答反应过程。
- Abstract:
- In order to study the effect of GmXTH1 gene on the phenotype and physiological and biochemical characteristics of soybean seedlings under drought stress, five transgenic soybean varieties M18, GmXTH1 overexpressing transgenic lines OEA1 and OEA2, GmXTH1 interfering expressing transgenic lines IEA1 and IEA2 were used as experimental materials. We set three different water treatments using the potting method to measure the phenotype of RWC, SOD and POD activity, and MDA content of different transformed lines at the seedling stage. The results showed that with the increase of drought stress, RWC decreased relatively, SOD and POD activity increased firstly and then decreased, and MDA content increased. Under the same drought stress condition, compared with the control M18, OEA1 and OEA2 with overexpressed GmXTH1 gene had higher RWC, higher SOD and POD activity, faster response speed, weaker MDA content, lower growth rate, thicker green leaves, thicker stems, better overall plant type performance, and faster rehydration after drought stress. However, IEA1 and IEA2 with GmXTH1 interference expressed gene were on the contrary. Under drought stress, the overall performance of the plants was as follows: leaf wilted, stem withered and was thin, overall performance of plant type was poor, RWC, SOD and POD activities were relatively low, and response speed was slow. The result indicated that the GmXTH1 overexpressed gene had a positive effect on the physiological and biochemical indexes related to drought resistance of soybean plants, and GmXTH1 gene may be involved in the response to drought stress in soybean.
参考文献/References:
[1]周恩远,刘丽君,祖伟,等.春大豆农艺性状与品质相关关系的研究[J].东北农业大学报,2008,39(2):145-149. ( Zhou E Y, Liu L J, Zu W, et al. Relationship between agronomic traits and quality of spring soybean [J].Journal of Northeast Agricultural University, 2008, 39(2): 145-149.)[2]刘清玮,高延辉,王希.大豆皂苷脂质体的制备及稳定性研究[J].吉林农业大学学报,2017, 39 (6):619-623. (Liu Q W, Gao Y H, Wang X.Preparation and stability of soybean saponin liposomes [J]. Journal of Jilin Agricultural University, 2017, 39 (6):619-623.)[3]Lesk C, Rowhani P, Ramankutty N. Influence of extreme weather disasters on global crop production[J]. Nature, 2016, 529:84-87[4]Hu Y N, Liu Y J, Tang H J, et al. Contribution of drought to potential crop yield reduction in a wheat-maize rotation region in the North China Plain[J]. Journal of Integrative Agriculture, 2014, 13:1509-1519.[5]He X Y, Zheng H F, Guo R C, et al. Spatial and temporal analysis of drought risk during the crop-growing season over northeast China[J]. Natural Hazards, 2014, 71:275-289.[6]王芳.干旱胁迫对大豆产量及品质性状的影响[D].大庆:黑龙江八一农垦大学,2006.(Wang F. Effects of drought stress on soybean yield and quality characters [D]. Daqing: Heilongjiang Bayi Agricultural University, 2006.)[7]曹秀清,蒋尚明.干旱胁迫对大豆品质及产量的影响[J].现代农业科技,2017(16):3-4,7. (Cao X Q, Jiang S M.Effects of drought stress on soybean quality and yield [J]. Modern Agricultural Science and Technology, 2017(16):3-4,7.)[8]Louren T,Saibo N,Oliveira M M,et al.Inducible and constitutive expression of Hv CBF4 in rice leads to differential gene expression and drought tolerance[J].Biologia Plantarum,2011,55(4):653-663.[9]Rose J K C,Braam J,Fry S C,et al.The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis:Current perspectives and a new unifying nomenclature[J] .Plant Cell Physiol,2002,43(12):1421-1435.[10]Campbell P,Braam J.Xyloglucan endotransglycosylases:Diversity of genes,enzymes and potential wall-modifying functions[J].Trends Plant Science,1999,4(9):361-366.[11]Baumann M J,Eklof J M,Michel G,et al.Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases:Biological implications for cell wall metabolism[J]. Plant Cell,2007,19(6):1947-1963.[12]Saladie′M,Rose J K C,Cosgrove D J,et al.Characterization of a new xyloglucan endotransglucosylase/hydrolase(XTH)from ripening tomato fruit and implications for the diverse modes of enzymic action [J].Plant Journal,2006,47(2):282-295.[13]Kallas A M,Piens K,Denman S E,et al.Enzymatic properties of native and deglycosylated hybrid aspen(Populus tremula×tremuloides)xyloglucan endotransglycosylase 16A expressed in Pichia pastoris[J].The Biochemical Journal,2005,390(1):105-113.[14]Van Sandt V S T,Guisez Y,Verbelen J P,et al.Analysis of a xyloglucan endotransglycosylase/hydrolase(XTH)from the lycopodiophyte Selaginella kraussiana suggests that XTH sequence characteristics and function are highly conserved during the evolution of vascular plants[J].Journal of Experimental Botany,2006,57(12):2909-2922.[15]Zhu X F,Lei G J,Wang Z W,et al.Coordination between apoplastic and symplastic detoxification confers plant aluminum resistance[J].Plant Physiology,2013,162:1947-1955. [16]Zhu X F,Wan J X,Sun Y,et al.Xyloglucan endotransglucosylase-hydrolase 17 interacts with xyloglucan endotransglucosylase-hydrolase 31 to confer xyloglucan endotrans-glucosylase action and affect aluminum sensitivity in Arabidopsis[J].Plant Physiology,2014,165:1566-1574.[17]Cho S K,Kim J E,Park J A,et al.Constitutive expression of abiotic stress-inducible hot pepper CaXTH3,which encodes a xyloglucan endotransglucosylase/hydrolase homolog,improves drought and salt tolerance in transgenic Arabidopsis plants[J].FEBS Letters,2006,580:3136-3144.[18]Choi J Y,Seo Y S,Kim S J,et al.Constitutive expression of CaXTH3,a hot pepper xyloglucan endotransglucosylase/hydrolase,enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv.Dotaerang)[J].Plant Cell Reports,2011,30:867-877.[19]Han Y S,Wang W,Sun J,et al.Populus euphratica XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants[J].Journal Experimental Botany,2013,64(14):4225-4238.[20]Jan A, Yang G, Nakamura H, et al. Characterization of a xyloglucan endotransglucosylase gene that is up-regulated by gibberellin in rice[J]. Plant Physiology, 2004,136(3):3670-3681.[21]Zhu X F,Shi Y Z,Lei G J,et al.XTH31,encoding an in vitro XEH/XET-active enzyme,regulates aluminum sensitivity by modulating in vivo XET action,cell wall xyloglucan content,and aluminum binding capacity in Arabidopsis[J].Plant Cell,2012,24(11):4731-4747.[22]Endo A, Tatematsu K, Hanada K, et al. Tissue-specific transcriptome analysis reveals cell wall metabolism, flavonol biosynthesis and defense responses are activated in the endosperm of germinating Arabidopsis thaliana seeds[J]. Plant Cell Physiology, 2012,53(1):16-27. [23]Song L, Valliyodan B, Prince S, et al. Characterization of the XTH gene family: New insight to the roles in soybean flooding tolerance[J]. International Journal of Molecular Sciences, 2018,19(9):2705.[24]乔富廉.植物生理学实验分析测定技术[M].北京:中国农业出版社, 2002:3-4.(Qiao F L. Plant physiology experiment analysis and determination technology [M]. Beijing: China Agriculture Press, 2002:3-4.)[25]张宪政.作物生理研究法[M].北京:北京农业出版社,1990:195-206.(Zhang Z H. Crop physiology research method [M]. Beijing: Beijing Agricultural Press, 1990:195-206.)[26]刘友良.植物水分逆境生理[M].北京:中国农业出版社,1992:57-63.( Liu Y L. Plant water stress physiology [M]. Beijing: China Agricultural Press, 1992:57-63.)[27]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000:195-197.( Li H S. Principles and techniques of plant physiological and biochemical experiments [M]. Beijing: Higher Education Press, 2000:195-197.)[28]白志英,李村东,孙红春,等.干旱胁迫对小麦染色体代换系旗叶相对含水量和离体是谁速率的影响[J].华北农学报, 2008, 23 (1):62-65. (Bai Z Y, Li C D, Sun H C, et al.Effect of drought stress on relative water content and RWL of flag leaves in wheat chromosome substitution lines[J].Acta Agriculturae Boreali-Sinica, 2008, 23 (1):62-65.)[29]王帆,何奇瑾,周广胜.夏玉米三叶期持续干旱下不同叶位叶片含水量变化及其与光合作用的关系[J].生态学报,2019,39(1):254-264.(Wang F, He Q J, Zhou G S. Changes of leaf water content at different leaf positions and their relationship with photosynthesis in summer maize under sustained drought at trifoliate stage[J].Acta Ecologica Sinica,2019,39(1):254-264.)[30]谢晨,谢皓,陈学珍.大豆抗旱形态和生理生化指标研究进展[J].北京农学院学报, 2008, 23(4):74-76. (Xie C, Xie H, Chen X Z.Advance on the morphologic characteristic and physiological index in the drought-resistance soybean [J].Journal of Beijing University of Agriculture, 2008, 23(4):74-76.)[31]王启明.干旱胁迫对大豆苗期叶片保护酶活性和膜脂过氧化作用的影响[J].农业环境科学学报, 2006, 25(4):918-921. (Wang Q M.Effects of drought stress on protective enzymes activities and membrane lipid peroxidation in leaves of soybean seedlings[J].Journal of Agro-Environment Science, 2006, 25(4):918-921.)[32]莫红,翟兴礼.干旱胁迫对大豆苗期生理生化特征的影响[J].湖北农业科学, 2007, 46(1):45-48. (Mo H, Zhai X L.Effects of drought stress on physiological and biochemical characteristics of soybean seedlings[J].Hubei Agricultural Sciences, 2007, 46(1):45-48.)[33]刘俊,廖柏寒,周航,等.镉胁迫对大豆花荚期生理生态的影响[J].生态环境学报, 2009,18(1):176-182.(Liu J, Liao B H, Zhou H, et al.Effects of Cd2+ on the physiological and biochemical properties of Glycine max in flowering-poding phase[J].Ecology and Environmental Sciences, 2009, 18 (1):176-182.)[34]楼靓珺,宋新山,赵晓祥.苗期大豆对土壤水分和空气湿度变化的生理生化响应[J].草业科学,2013, 30 (6):898-903. (Lou L J, Song X S, Zhao X X. Response of physiology and biochemistry of soybean seedling to soil water deficit and air humidity [J]. Science of Grass Industry, 2013, 30 (6):898-903.)[35]焦健,李朝周,黄高宝.钴对干旱胁迫下大豆幼苗叶片的保护作用及其机理[J].应用生态学报,2006, 17(5):796-800. (Jiao J, Li C Z, Huang G B .Protective effects and their mechanisms of cobalt on soybean seedling′s leaf under drought stress[J].Chinese Journal of Applied Ecology, 2006, 17 (5):796-800.)[36]闫美玲,李向东,林英杰,等.苗期干旱胁迫对不同抗旱花生品种生理特性、产量和品质的影响[J].作物学报,2007,33(1):113-119. (Yan M L, Li X D, Lin Y J, et al.Effects of drought during seedling stage on physiological traits, yield and quality of different peanut cultivars[J].Acta Agronomica Sinica, 2007, 33(1):113-119.)
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(03):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(03):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(03):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(03):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(03):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(03):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(03):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(03):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(03):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(03):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]雍太文,刘小明,肖秀喜,等.不同种子处理对苗期干旱胁迫条件下大豆农艺性状、产量及品质的影响[J].大豆科学,2013,32(05):620.[doi:10.11861/j.issn.1000-9841.2013.05.0620]
YONG Tai-wen,LIU Xiao-ming,XIAO Xiu-xi,et al.Effects of Different Seed Treatments on Agronomic Properties,Yield and Quality of Soybean under Drought Stress at Seedling Stage[J].Soybean Science,2013,32(03):620.[doi:10.11861/j.issn.1000-9841.2013.05.0620]
[12]芮海英,王丽娜,金 铃,等.苗期干旱胁迫对不同大豆品种叶片保护酶活性及丙二醛含量的影响[J].大豆科学,2013,32(05):647.[doi:10.11861/j.issn.1000-9841.2013.05.0647]
RUI Hai-ying,WANG Li-na,JIN Ling,et al.Effect of Drought Stress at Seedling on Protective Enzyme Activity and MDA Content of Different Soybeans[J].Soybean Science,2013,32(03):647.[doi:10.11861/j.issn.1000-9841.2013.05.0647]
[13]王林红,乔 潇,乔亚科,等.PEG模拟干旱胁迫下不同类型大豆的生理生化响应[J].大豆科学,2014,33(03):370.[doi:10.11861/j.issn.1000-9841.2014.03.0370]
WANG Lin-hong,QIAO Xiao,QIAO Ya-ke,et al.Physiological and Biochemical Responses of Different Soybeans under PEG Simulated Drought Stress[J].Soybean Science,2014,33(03):370.[doi:10.11861/j.issn.1000-9841.2014.03.0370]
[14]刘峰,宁海龙,刘剑利,等.干旱胁迫对亚有限大豆植株鲜重建成与分配的影响[J].大豆科学,2011,30(04):609.[doi:10.11861/j.issn.1000-9841.2011.04.0609]
LIU Feng,NING Hai-long,LIU Jian-li,et al.Effects of Drought Stress on Establishment and Distribution of Plant Fresh Weight in Semi-determinate Soybean(Glycine max L.Merill) Varieties[J].Soybean Science,2011,30(03):609.[doi:10.11861/j.issn.1000-9841.2011.04.0609]
[15]阮英慧,董守坤,刘丽君,等.干旱胁迫下外源脱落酸对大豆花期生理特性的影响[J].大豆科学,2012,31(03):385.[doi:10.3969/j.issn.1000-9841.2012.03.010]
RUAN Ying-hui,DONG Shou-kun,LIU Li-jun,et al.Effects of Exogenous Abscisic Acid on Physiological Characteristics in Soybean Flowering under Drought Stress[J].Soybean Science,2012,31(03):385.[doi:10.3969/j.issn.1000-9841.2012.03.010]
[16]董兴月,林 浩,刘丽君,等.干旱胁迫对大豆生理指标的影响[J].大豆科学,2011,30(01):83.[doi:10.11861/j.issn.1000-9841.2011.01.0083]
DONG Xing-yue,LIN Hao,LIU Li-jun,et al.Influence of Drought Stress on Soybean Physiological Indexes[J].Soybean Science,2011,30(03):83.[doi:10.11861/j.issn.1000-9841.2011.01.0083]
[17]刘丽君,林浩,唐晓飞,等.干旱胁迫对不同生育阶段大豆产量形态建成的影响[J].大豆科学,2011,30(03):405.[doi:10.11861/j.issn.1000-9841.2011.03.0405]
LIU Li-jun,LIN Hao,TANG Xiao-fei,et al.Drought Stress Influence Soybean Yield Morphogenesis in Different Growth Stages[J].Soybean Science,2011,30(03):405.[doi:10.11861/j.issn.1000-9841.2011.03.0405]
[18]赵坤,董守坤,刘丽君,等.干旱胁迫对春大豆开花期根系生理特性的影响[J].大豆科学,2010,29(03):437.[doi:10.11861/j.issn.1000-9841.2010.03.0437]
ZHAO Kun,DONG Shou-kun,LIU Li-jun,et al.Effects of Drought Stress on Physiological Characteristics of Root System of Spring Soybean in Flowering Period[J].Soybean Science,2010,29(03):437.[doi:10.11861/j.issn.1000-9841.2010.03.0437]
[19]李建英,田中艳,周长军,等.干旱胁迫下化控种衣剂对大豆幼苗生长发育及保护酶活性的影响[J].大豆科学,2010,29(04):611.[doi:10.11861/j.issn.1000-9841.2010.04.0611]
LI Jian-ying,TIAN Zhong-yan,ZHOU Chang-jun,et al.Effect of Chemical Seed Coating on Growth and Development of Soybean Seedlings under Drought Stress[J].Soybean Science,2010,29(03):611.[doi:10.11861/j.issn.1000-9841.2010.04.0611]
[20]钟鹏,吴俊江,刘丽君,等.低磷和干旱胁迫对不同基因型大豆光合生理特性的影响[J].大豆科学,2009,28(05):806.[doi:10.11861/j.issn.1000-9841.2009.05.0806]
ZHONG Peng,WU Jun-jiang,LIU Li-Jun,et al.Effects of Phosphorus Deficiency and Drought Stress on Photosynthetic Characters in Different Genotypic Soybeans[J].Soybean Science,2009,28(03):806.[doi:10.11861/j.issn.1000-9841.2009.05.0806]
备注/Memo
收稿日期:2021-12-28