[1]刘薇,张彦威,王玉斌,等.大豆涝渍响应NAC基因的鉴定及GmNAC038的克隆和激素应答分析[J].大豆科学,2021,40(02):159-167.[doi:10.11861/j.issn.1000-9841.2021.02.0159]
 LIU Wei,ZHANG Yan-wei,WANG Yu-bin,et al.Identification of Waterlogging Responsive NAC Genes in Soybean and Cloning and Hormone Responsive Analysis of GmNAC038[J].Soybean Science,2021,40(02):159-167.[doi:10.11861/j.issn.1000-9841.2021.02.0159]
点击复制

大豆涝渍响应NAC基因的鉴定及GmNAC038的克隆和激素应答分析

参考文献/References:

[1]霍治国, 范雨娴, 杨建莹, 等. 中国农业洪涝灾害研究进展[J]. 应用气象学报, 2017, 28(6): 641-653. (Huo Z G, Fan Y X, Yang J Y, et al. Review on agricultural flood disaster in China[J]. Journal of Applied Meteorological Science, 2017, 28(6):641-653.)[2]王彩洁, 李伟, 张礼凤, 等. 黄淮海地区主栽大豆品种耐涝性比较研究[J]. 山东农业科学, 2016, 48(5): 23-27. (Wang C J, Li W, Zhang L F, et al. Comparative studies on waterlogging tolerance of major soybean cultivars in Huanghuaihai valley region[J]. Shandong Agricultural Sciences, 2016, 48(5): 23-27.)[3]Sullivan M, Van Toai T, Fausey N, et al. Evaluating on-farm flooding impacts on soybean[J]. Crop Science, 2001, 41(1): 93-100.[4]Wu C J, Zeng A L, Chen P Y, et al. An effective field screening method for flood tolerance in soybean[J]. Plant Breeding, 2017, 136(5): 710-719.[5]Olsen A N, Ernst H A, Leggio L L, et al. NAC transcription factors: Structurally distinct, functionally diverse[J]. Trends in Plant Science, 2005, 10(2): 79-87.[6]Quach T N, Tran L S P, Valliyodan B, et al. Functional analysis of water stress-responsive soybean GmNAC003 and GmNAC004 transcription factors in lateral root development in Arabidopsis[J]. PLoS One, 2014, 9(1): e84886.[7]Dong Y, Wang B H, Wang Y Z. Functional characterization of the orthologs of AtNST1/2 in Glycine soja (Fabaceae) and the evolutionary implications[J]. Journal of Systematics and Evolution, 2013, 51(6):693-703.[8]Kim H J, Nam H G, Lim P O. Regulatory network of NAC transcription factors in leaf senescence[J]. Current Opinion in Plant Biology, 2016, 33: 48-56.[9]Hu H H, Dai M Q, Yao J L, et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proceedings of the National Academy of Sciences, 2006, 103(35): 12987-12992.[10]Mao X G, Chen S S, Li A, et al. Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis[J]. PLoS One, 2014, 9(1): e84359.[11]Fang Y, Liao K, Du H, et al. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice[J]. Journal of Experimental Botany, 2015, 66(21): 6803-6817.[12]Puranik S, Sahu P P, Srivastava P S, et al. NAC proteins:Regulation and role in stress tolerance[J]. Trends in Plant Science, 2012, 17(6):369-381.[13]杨文静, 巩檑, 张丽, 等. 马铃薯异源表达梭梭HaNAC1基因提高抗旱性的功能解析[J]. 植物遗传资源学报,2019, 20(4): 1020-1025. (Yang W J, Gong L, Zhang L, et al. Stable transformation of Haloxylon ammodendron HaNAC1 gene to improve drought resistance of potato[J]. Journal of Plant Genetic Resources, 2019, 20(4):1020-1025.)[14]Melo B P, Fraga O T, Silva J C F, et al. Revisiting the soybean GmNAC superfamily[J]. Frontiers in Plant Science, 2018, 9:1864.[15]So H A, Lee J H. NAC transcription factors from soybean (Glycine max L.) differentially regulated by abiotic stress[J]. Journal of Plant Biology, 2019, 62(2): 147-160.[16]张彦威, 张礼凤, 李伟, 等. 大豆盐胁迫相关GmNAC基因的鉴定、表达及变异分析[J]. 作物学报, 2016, 42(7): 990-999. (Zhang Y W, Zhang L F, Li W, et al. Identification, expression and variation analysis of salt tolerance related GmNAC genes in soybean[J]. Acta Agronomica Sinica, 2016, 42(7):990-999.[17]Hao Y J, Wei W, Song Q X, et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants[J]. The Plant Journal, 2011, 68(2): 302-313.[18]Yang X, Kim M Y, Ha J, et al. Overexpression of the soybean NAC gene GmNAC109 increases lateral root formation and abiotic stress tolerance in transgenic Arabidopsis plants[J]. Frontiers in Plant Science, 2019, 10: 1036.[19]Lin Y H, Li W, Zhang Y W, et al. Identification of genes/proteins related to submergence tolerance by transcriptome and proteome analyses in soybean[J]. Scientific Reports, 2019, 9(1): 14688.[20]Hu B, Jin J, Guo A Y, et al. GSDS 2.0: An upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297.[21]Marchler-Bauer A, Derbyshire M K, Gonzales N R, et al. CDD: NCBI′s conserved domain database[J]. Nucleic Acids Research, 2015, 43(D1): D222-D226.[22]Zhao C, Avci U, Grant E H, et al.XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem[J]. The Plant Journal, 2008, 53(3):425-436.[23]Rauf M, Arif M, Fisahn J, et al. NAC transcription factor speedy hyponastic growth regulates flooding-induced leaf movement in Arabidopsis[J]. The Plant Cell, 2013, 25(12): 4941-4955.[24]Kim S G, Lee A K, Yoon H K, et al. A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination[J]. The Plant Journal, 2008, 55(1): 77-88.[25]Lee S, Seo P J, Lee H J, et al. A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis[J]. The Plant Journal, 2012, 70(5): 831-844.[26]Lee S, Lee H J, Huh S U, et al. The Arabidopsis NAC transcription factor NTL4 participates in a positive feedback loop that induces programmed cell death under heat stress conditions[J]. Plant Science, 2014, 227: 76-83.[27]Yang S D, Seo P J, Yoon H K, et al. The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes[J]. The Plant Cell, 2011, 23(6): 2155-2168.[28]Oda-Yamamizo C, Mitsuda N, Sakamoto S, et al. The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves[J]. Scientific Reports, 2016, 6(1): 1-13.[29]Xie Q, Frugis G, Colgan D, et al. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development[J]. Genes & Development, 2000, 14(23): 3024-3036.[30]Mitsuda N, Iwase A, Yamamoto H, et al. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis[J]. The Plant Cell, 2007, 19(1): 270-280.[31]Hussey S G, Mizrachi E, Spokevicius A V, et al. SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus[J]. BMC Plant Biology, 2011, 11(1): 1-17.[32]Zhou J, Zhong R, Ye Z H. Arabidopsis NAC domain proteins, VND1 to VND5, are transcriptional regulators of secondary wall biosynthesis in vessels[J]. PLoS One, 2014, 9(8): e105726.[33]Tang N, Shahzad Z H, Lonjon F, et al. Natural variation at XND1 impacts root hydraulics and trade-off for stress responses in Arabidopsis[J]. Nature Communications, 2018, 9(1): 1-12.[34]Xu C S, Xia C, Xia Z Q, et al. Physiological and transcriptomic responses of reproductive stage soybean to drought stress[J]. Plant Cell Reports, 2018, 37(12):1611-1624.[35]Else M A, Jackson M B. Transport of 1-aminocyclopropane-1-carboxylic acid(ACC) in the transpiration stream of tomato (Lycopersicone sculentum) in relation to foliar ethylene production and petiole epinasty[J]. Functional Plant Biology, 1998, 25(4): 453-458.[36]Jackson M B, Colmer T D. Response and adaptation by plants to flooding stress[J]. Annals of Botany, 2005, 96(4): 501-505.[37]Tamang B G, Magliozzi J O, Maroof M A S, et al. Physiological and transcriptomic characterization of submergence and reoxygenation responses in soybean seedlings[J]. Plant,Cell and Environment, 2014, 37(10): 2350-2365.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(02):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(02):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(02):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(02):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(02):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(02):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(02):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(02):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(02):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(02):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

收稿日期:2020-12-21

基金项目:山东省自然科学基金青年项目(ZR2020QC119);山东省农业科学院农业科技创新工程(CXGC2018E01);山东省农业良种工程(2019LZGC004);现代大豆产业技术体系建设专项(CARS-04-CES16)。
第一作者:刘薇(1987—),女,博士,助理研究员,主要从事大豆耐逆基因功能研究。E-mail:hnaulw@126.com。
通讯作者:张礼凤(1972—),女,学士,研究员,主要从事大豆耐逆基因挖掘。E-mail:zhanglifeng9639@sina.com。

更新日期/Last Update: 2021-07-19