[1]袁俊杰,马新华,田琼,等.杂草疫情分析在大豆产地溯源中的辅助性应用研究[J].大豆科学,2021,40(01):106-111.[doi:DOI:10.11861/j.issn.1000-9841.2021.01.0106]
 YUAN Jun-jie,MA Xin-hua,TIAN Qiong,et al.Study on the Auxiliary Application of Weed Epidemic Analysis to Trace Soybean Origin[J].Soybean Science,2021,40(01):106-111.[doi:DOI:10.11861/j.issn.1000-9841.2021.01.0106]
点击复制

杂草疫情分析在大豆产地溯源中的辅助性应用研究

参考文献/References:

[1] 石慧, 王思明. 相对优势地位的转变:中美大豆发展比较研究[J]. 中国农史, 2018, 37(5): 56-62. (Shi H, Wang S M. Shift of status: Comparative study on the development of soybean in China and the United States[J]. Agricultural History of China, 2018, 37(5): 56-62.)
[2]翟涛, 吴玲. 开放视角下中国大豆产业发展态势与振兴策略研究[J]. 大豆科学, 2020, 39(3): 472-478. (Zhai T, Wu L. Study on development situation and revitalization strategy of soybean industry in china from an open perspective[J]. Soybean Science, 2020, 39(3): 472-478.)
[3]马英辉. 中国大豆目标价格政策的经济效应分析[D]. 北京: 中国农业大学, 2018: 16-23. (Ma Y H. Analysis on the economic effect of China′s soybean target price policy[D]. Beijing: China Agricultural University, 2018: 16-23.)
[4]程遥, 马禹, 宁健康. 中美贸易争端背景下中国大豆产业发展研究[J]. 大豆科学, 2020, 39(2): 311-316. (Cheng Y, Ma Y, Ning J K.Research on the development of China′s soybean industry under the background of the trade disputes between China and the United States[J]. Soybean Science, 2020, 39(2): 311-316.)
[5]Takashi K. Traceability studies for analyzing the geographical origin of rice by isotope ratio mass spectrometry[J]. Bunseki Kagaku, 2014, 63(3): 233-244.
[6]蒋越, 李安, 靳欣欣, 等. 基于稳定性同位素技术的水果及其制品产地溯源研究进展[J]. 食品安全质量检测学报, 2020, 11(1): 121-127. (Jiang Y, Li A, Jin X X, et al. Research progress on origin tracing of fruit and its products based on stable isotope technology[J]. Journal of Food Safety and Quality, 2020, 11(1): 121-127.)
[7]Eisenstecken D, Stürz B, Robatscher P, et al. The potential of near infrared spectroscopy (NIRS) to trace apple origin: Study on different cultivars and orchard elevations[J]. Postharvest Biology and Technology, 2019, 147:123-131.
[8]Manfredi M, Robotti E, Quasso F, et al. Fast classification of hazelnut cultivars through portable infrared spectroscopy and chemometrics[J]. Molecular and Biomolecular Spectroscopy, 2018, 189:427-435.
[9]李瑞琴, 白滨, 于安芬, 等. 基于矿物元素指纹分析的药食兼用百合产地溯源[J]. 中国食物与营养, 2019, 25(12): 15-18. (Li R Q, Bai B, Yu A F, et al. Traceability of origin of medicine and edible lily based on fingerprint analysis on mineral elements[J]. Food and Nutrition in China, 2019, 25(12): 15-18.)
[10]Batista B L, da Silva L R S, Rocha B A, et al. Multi-element determination in Brazilian honey samples by inductively coupled plasma mass spectrometry and estimation of geographic origin with data mining techniques[J]. Food Research International, 2012, 49(1): 209-215.
[11]陈丽萍, 杨玲春, 陈芸, 等. 云南出口新鲜松茸产地属性DNA指纹图谱构建[J]. 中国食用菌, 2014, 33(5): 43-50.(Chen L P, Yang L C, Chen Y, et al. The establishment of DNA finger print illustrations of Yunnan T. matsutake for commercial export[J]. Edible Fungi of China, 2014, 33(5): 43-50.)
[12]田新权, 付小琼, 时萌, 等. 棉纤维DNA的提取及其在品种溯源中的尝试[J]. 棉花学报, 2019, 31(2): 156-162. (Tian X Q, Fu X Q, Shi M, et al. Extraction of cotton fiber DNA and its application in traceability[J]. Cotton Science, 2019, 31(2): 156-162.)
[13]胡圣英, 任红波, 张军, 等. 大米产地溯源方法研究进展[J]. 中国农学通报, 2020, 36(14): 148-155. (Hu S Y, Ren H B, Zhang J, et al. Traceability method of rice origin: Research progress[J]. Chinese Agricultural Science Bulletin, 2020, 36(14): 148-155.)
[14]Wu Y, Luo D, Dong H, et al. Geographical origin of cereal grains based on element analyser-stable isotope ratio mass spectrometry (EA-SIRMS)[J]. Food Chemistry, 2015, 174: 553-557.
[15]Li G, Nunes L, Wang Y J, et al. Profiling the ionome of rice and its use in discriminating geographical origins at the regional scale, China[J]. Journal of Environmental Sciences, 2013, 25(1): 144-154.
[16]宋君, 雷绍荣, 郭灵安, 等. DNA指纹技术在食品掺假、产地溯源检验中的应用[J]. 安徽农业科学, 2012, 40(6): 3226-3228, 3233. (Song J, Lei S R, Guo L A, et al. Application of DNA fingerprint technique in identification of adulterate food and food traceability[J]. Journal of Anhui Agricultural Sciences, 2012, 40(6): 3226-3228, 3233.)
[17]胡文多, 宋志刚, 赵曙国. 进口大豆中杂草种子含量检测及分析[J]. 植物检疫, 2004, 18(3): 173-174. (Hu W D, Song Z G, Zhao S G. Detection and analysis of weed seed content in imported soybean[J]. Plant Quarantine, 2004, 18(3): 173-174.)
[18]曾思海, 陈劲松, 吴斌彬. 泉 州口岸进口美洲大豆检出杂草情况分析[J]. 福建农业科技, 2015(4): 7-9. (Zeng S H, Chen J S, Wu B B. Case analysis on detecting weeds from imported American soybean in Quanzhou port[J]. Fujian Agricultural Science and Technology, 2015(4): 7-9.)
[19]李瑞法, 楚伟, 柳之光, 等. 2003—2014年进境大豆携带杂草疫情分析[J]. 中国植保导刊, 2015, 35(11): 64-69. (Li R F, Chu W, Liu Z G, et al. Analysis on epidemic situation of quarantine weed seeds in imported soybeans from 2003 to 2014[J]. China Plant Protection, 2015, 35(11): 64-69.)
[20]龙阳, 马新华, 袁俊杰, 等. 我国进口油菜籽中截获苋属杂草情况概述[J]. 中国植保导刊, 2019, 39(3): 75-78. (Long Y, Ma X H, Yuan J J, et al. Overview of amaranth weeds intercepted from imported rapeseed in China[J]. China Plant Protection, 2019, 39(3): 75-78.)
[21]鹿保鑫, 马楠, 王霞, 等. 基于电感耦合等离子体质谱仪分析矿物元素含量的大豆产地溯源[J]. 食品科学, 2018, 39(8): 288-294. (Lu B X, Ma N, Wang X, et al. Tracing the geographical origin of soybeans based on inductively coupled plasma mass spectrometry (ICP-MS) analysis of mineral elements[J]. Food Science, 2018, 39(8): 288-294.)
[22]卢锡纯. 基于脂肪酸含量的大豆产地溯源的研究[J]. 食品研究与开发, 2018, 39(16): 55-59. (Lu X C. Study on origin identification traceability based on contents of soybean fatty acid content components[J]. Food Research and Development, 2018, 39(16): 55-59.)
[23]刘文静. 基于大豆异黄酮特征的大豆产地溯源研究[D].大庆: 黑龙江八一农垦大学, 2018: 10-12. (Liu W J. Origin traceability of soybean based on soybean isoflavone features[D]. Daqing: Heilongjiang Bayi Agricultural University, 2018: 10-12.)
[24]鹿保鑫, 马楠, 王霞, 等. 大豆有机成分辅助矿物元素指纹特征产地溯源[J]. 食品科学, 2019, 40(4): 338-344. (Lu B X, Ma N, Wang X, et al. Geographical traceability of soybeans by organic composition combined with mineral element fingerprint[J]. Food Science, 2019, 40(4): 338-344.)
[25]沈丹萍. 不同产地大豆中矿质元素及异黄酮含量分析[D].苏州: 苏州大学, 2014: 4-6. (Shen D P. Analysis of the contents of mineral elements and isoflavones in soybeans produced in the different regions[D]. Suzhou: Soochow University, 2014: 4-6.)
[26]张勇, 李雪, 汪雪芳, 等. 基于脂肪酸组成的进口大豆鉴别技术研究[J]. 食品安全质量检测学报, 2020, 11(8): 2375-2379. (Zhang Y, Li X, Wang X F, et al. Research on identification of imported soybean based on fatty acid composition[J]. Journal of Food Safety & Quality, 2020, 11(8): 2375-2379.)

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

海关总署科研项目(2019HK052)。

更新日期/Last Update: 2021-02-09