LIN Yan-hui,TANG Li-qiong,XU Jing,et al.Bioinformatics Analysis and Interacting Protein Prediction of Soybean bZIP Gene Glyma04g04170 in Response to Submergence Stress[J].Soybean Science,2020,39(05):727-733.[doi:10.11861/j.issn.1000-9841.2020.05.0727]
大豆响应涝害bZIP基因Glyma04g04170的生物信息学分析及互作蛋白预测
- Title:
- Bioinformatics Analysis and Interacting Protein Prediction of Soybean bZIP Gene Glyma04g04170 in Response to Submergence Stress
- 文献标志码:
- A
- 摘要:
- bZIP转录因子参与多种非生物胁迫,为研究涝害胁迫下大豆bZIP转录因子的调控作用,本研究对耐涝性极强大豆品种齐黄34进行淹水处理,对处理不同时间根部组织样品进行转录组测序,筛选出1个响应耐涝的差异表达的bZIP转录因子编码基因Glyma04g04170,其qRT-PCR分析结果与转录组测序数据趋势一致,在4个取样时间点都下调表达,证明该转录组数据具有可靠性,Glyma04g04170可能通过负调控的方式参与大豆耐涝应答反应。Glyma04g04170蛋白保守结构域分析发现该蛋白内部含有bZIP保守结构域。蛋白三级结构中存在参与寡聚化作用的亮氨酸拉链保守结构域,同时也包含与特异DNA序列相结合、起核定位信号作用的N-x7-R/K结构。分离鉴定的Glyma04g04170蛋白是一个结合AREB/ABF的bZIP转录因子,预测结果显示,与该蛋白互作的蛋白主要是丝氨酸/苏氨酸残基蛋白磷酸酶。转录组和RT-qPCR数据表明,Glyma02g37090基因在4个取样时间点的表达量都呈显著性差异,处理与对照相比,表达量升高。
- Abstract:
- bZIP transcription factors are involved in a variety of abiotic stresses, in order to study the regulation of bZIP transcription factors in soybean under submergence stress, we flooded the submergence-resistant soybean variety Qihuang 34, and performed transcriptome sequencing on the root tissue samples treated at different times, we finally selected a bZIP transcription factor encoding gene Glyma04g04170 as the focus of this research. The result of qRT-PCR analysis of Glyma04g04170 was consistent with the trend of transcriptome data. It suggested that Glyma04g04170 may response to submergence tolerance through negative regulation. The conserved domain of Glyma04g04170 protein was analyzed, and it was found that the protein contained a bZIP conserved domain. The tertiary structure of the protein showed the Leu’s position of leucine zipper involved in oligomerization in the conserved domain, and the N-x7-R/K structure which was combined with the specific DNA sequence and acted as a nuclear localization signal. In this study, Glyma04g04170 was isolated and the encoded protein was identified as a bZIP transcription factor binding with AREB/ABF. The proteins which interacted with Glyma04g04170 were predicted, and they were mainly serine/threonine acid residue protein phosphatase. The expression of Glyma02g37090 gene was significantly different in transcriptome data and qRT-PCR, and the expression levels in submergence treatment were increased compared with the control group at four time points.
参考文献/References:
[1]Fujita Y, Fujita M, Satoh R, et al. AREB1 is a transcription activator of novel ABRE dependent ABA signaling that enhances drought stress tolerance in Arabidopsis[J]. The Plant Cell, 2005, 17(12): 3470-3488.[2]Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures:Towards genetic engineering for stress tolerance[J]. Planta, 2003, 218(1): 1-14. [3]Golldack D, Lüking I, Yang O. Plant tolerance to drought and salinity:Stress regulating transcription factors and their functional significance in the cellular transcriptional network[J]. Plant Cell Reports, 2011, 30(8): 1383-1391. [4]Jakoby M, Weisshaar B, Drge-Laser W,et al. bZIP transcription factors in Arabidopsis[J]. Trends Plant Science, 2002, 7: 106-111. [5]Lindemose S, O’Shea C, Jensen M K,et al. Structure, function and networks of transcription factors involved in abiotic stress responses[J]. International Journal of Molecular Sciences, 2013, 14(3): 5842-5878.[6]Yang O, Popova O V, Süthoff U,et al. The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance[J]. Gene, 2009, 436(1-2): 45-55. [7]Sun X L, Li Y, Cai H, et al. The Arabidopsis AtbZIP1 transcription factor is a positive regulator of plant tolerance to salt, osmotic and drought stresses[J]. Journal of Plant Research, 2012, 125(3): 429-438.[8]Liu C T, Wu Y B, Wang X P. bZIP transcription factor OsbZIP52/RISBZ5: A potential negative regulator of cold and drought stress response in rice [J]. Planta, 2012, 235(6): 1157-1169.[9]Ying S, Zhang D F, Fu J,et al. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis[J]. Planta, 2012, 235(2): 453-469. [10]Wang C L, Lu G Q, Hao Y Q, et al. ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton [J]. Planta, 2017, 246(3): 453-469.[11]Kang C, Zhai H, He S,et al. A novel sweet potato bZIP transcription factor gene, IbbZIP1, is involved in salt and drought tolerance in transgenic Arabidopsis[J]. Plant Cell Reports, 2019: 1-10.[12]Xiang Y, Tang N, Du H,et al. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice[J]. Plant Physiology, 2008, 148(4): 1938-1952.[13]Liu C T, Mao B G, Ou S J,et al. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice [J]. Plant Molecular Biology, 2014, 84 (1-2): 19-36.[14]Lu G J, Gao C X, Zheng X N, et al. Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice[J]. Planta, 2009, 229(3): 605-615.[15]Hossain M A, Cho J I, Han M,et al. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice[J]. Journal of Plant Physiology, 2010, 167(17): 1512-1520. [16]Hossain M A, Lee Y, Cho J I,et al. The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice[J]. Plant Molecular Biology, 2010, 72(4-5): 557-566.[17]Gao S Q, Chen M, Xu Z S,et al. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants [J]. Plant Molecular Biology, 2011, 75(6): 537-553.[18]Li J. An abscisic acid-activated and calcium-independent protein kinase from guard cells of fava bean [J]. The Plant Cell, 1996, 8(12): 2359-2368.[19]Li J, Wang X Q, Watson M B. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase[J]. Science, 2000, 287(5451): 300-303. [20]Umezawa T, Yoshida R, Maruyama K, et al. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences, 2004, 101(49): 17306-17311. [21]Yoshida R. ABA-Activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis[J]. Plant and Cell Physiology, 2002, 43(12): 1473-1483. [22]Furihata T, Maruyama K, Fujita Y, et al. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1[J]. Proceedings of the National Academy of Sciences, 2006, 103(6): 1988-1993. [23]Fujii H, Verslues P E, Zhu J K. Identification of two protein kinases required forabscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis[J]. The Plant Cell, 2007, 19(2): 485-494. [24]Fujita Y, Nakashima K, Yoshida T, et al. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis[J]. Plant and Cell Physiology, 2009, 50(12): 2123-2132. [25]邢锦城, 孙晨曦, 洪立洲, 等. 大豆转录因子GmbZIP60对非生物胁迫的表达模式分析[J]. 大豆科学, 2018, 37(1): 45-49. (Xing J C, Sun C X, Hong L Z, et al. Expression patterns of soybean transcription factor GmbZIP60 in response to abiotic stresses[J]. Soybean Science, 2018, 37(1):45-49.)[26]Liao Y, Zou H, Wei W,et al. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis[J]. Planta, 2008, 228(2): 225-240.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(05):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(05):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(05):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(05):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(05):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(05):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(05):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(05):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(05):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(05):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
备注/Memo