[1]林延慧,唐力琼,徐靖,等.大豆响应涝害bZIP基因Glyma04g04170的生物信息学分析及互作蛋白预测[J].大豆科学,2020,39(05):727-733.[doi:10.11861/j.issn.1000-9841.2020.05.0727]
 LIN Yan-hui,TANG Li-qiong,XU Jing,et al.Bioinformatics Analysis and Interacting Protein Prediction of Soybean bZIP Gene Glyma04g04170 in Response to Submergence Stress[J].Soybean Science,2020,39(05):727-733.[doi:10.11861/j.issn.1000-9841.2020.05.0727]
点击复制

大豆响应涝害bZIP基因Glyma04g04170的生物信息学分析及互作蛋白预测

参考文献/References:

[1]Fujita Y, Fujita M, Satoh R, et al. AREB1 is a transcription activator of novel ABRE dependent ABA signaling that enhances drought stress tolerance in Arabidopsis[J]. The Plant Cell, 2005, 17(12): 3470-3488.[2]Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures:Towards genetic engineering for stress tolerance[J]. Planta, 2003, 218(1): 1-14. [3]Golldack D, Lüking I, Yang O. Plant tolerance to drought and salinity:Stress regulating transcription factors and their functional significance in the cellular transcriptional network[J]. Plant Cell Reports, 2011, 30(8): 1383-1391. [4]Jakoby M, Weisshaar B, Drge-Laser W,et al. bZIP transcription factors in Arabidopsis[J]. Trends Plant Science, 2002, 7: 106-111. [5]Lindemose S, O’Shea C, Jensen M K,et al. Structure, function and networks of transcription factors involved in abiotic stress responses[J]. International Journal of Molecular Sciences, 2013, 14(3): 5842-5878.[6]Yang O, Popova O V, Süthoff U,et al. The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance[J]. Gene, 2009, 436(1-2): 45-55. [7]Sun X L, Li Y, Cai H, et al. The Arabidopsis AtbZIP1 transcription factor is a positive regulator of plant tolerance to salt, osmotic and drought stresses[J]. Journal of Plant Research, 2012, 125(3): 429-438.[8]Liu C T, Wu Y B, Wang X P. bZIP transcription factor OsbZIP52/RISBZ5: A potential negative regulator of cold and drought stress response in rice [J]. Planta, 2012, 235(6): 1157-1169.[9]Ying S, Zhang D F, Fu J,et al. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis[J]. Planta, 2012, 235(2): 453-469. [10]Wang C L, Lu G Q, Hao Y Q, et al. ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton [J]. Planta, 2017, 246(3): 453-469.[11]Kang C, Zhai H, He S,et al. A novel sweet potato bZIP transcription factor gene, IbbZIP1, is involved in salt and drought tolerance in transgenic Arabidopsis[J]. Plant Cell Reports, 2019: 1-10.[12]Xiang Y, Tang N, Du H,et al. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice[J]. Plant Physiology, 2008, 148(4): 1938-1952.[13]Liu C T, Mao B G, Ou S J,et al. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice [J]. Plant Molecular Biology, 2014, 84 (1-2): 19-36.[14]Lu G J, Gao C X, Zheng X N, et al. Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice[J]. Planta, 2009, 229(3): 605-615.[15]Hossain M A, Cho J I, Han M,et al. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice[J]. Journal of Plant Physiology, 2010, 167(17): 1512-1520. [16]Hossain M A, Lee Y, Cho J I,et al. The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice[J]. Plant Molecular Biology, 2010, 72(4-5): 557-566.[17]Gao S Q, Chen M, Xu Z S,et al. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants [J]. Plant Molecular Biology, 2011, 75(6): 537-553.[18]Li J. An abscisic acid-activated and calcium-independent protein kinase from guard cells of fava bean [J]. The Plant Cell, 1996, 8(12): 2359-2368.[19]Li J, Wang X Q, Watson M B. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase[J]. Science, 2000, 287(5451): 300-303. [20]Umezawa T, Yoshida R, Maruyama K, et al. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences, 2004, 101(49): 17306-17311. [21]Yoshida R. ABA-Activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis[J]. Plant and Cell Physiology, 2002, 43(12): 1473-1483. [22]Furihata T, Maruyama K, Fujita Y, et al. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1[J]. Proceedings of the National Academy of Sciences, 2006, 103(6): 1988-1993. [23]Fujii H, Verslues P E, Zhu J K. Identification of two protein kinases required forabscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis[J]. The Plant Cell, 2007, 19(2): 485-494. [24]Fujita Y, Nakashima K, Yoshida T, et al. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis[J]. Plant and Cell Physiology, 2009, 50(12): 2123-2132. [25]邢锦城, 孙晨曦, 洪立洲, 等. 大豆转录因子GmbZIP60对非生物胁迫的表达模式分析[J]. 大豆科学, 2018, 37(1): 45-49. (Xing J C, Sun C X, Hong L Z, et al. Expression patterns of soybean transcription factor GmbZIP60 in response to abiotic stresses[J]. Soybean Science, 2018, 37(1):45-49.)[26]Liao Y, Zou H, Wei W,et al. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis[J]. Planta, 2008, 228(2): 225-240.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(05):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(05):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(05):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(05):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(05):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(05):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(05):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(05):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(05):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(05):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

收稿日期:2020-05-07
基金项目:2019年海南省基础与应用基础研究计划(自然科学领域)高层次人才项目(2019RC357);山东省农业良种工程项目(2019LZGC004)。
第一作者简介:林延慧(1984-),女,博士,助理研究员,主要从事大豆遗传育种研究。E-mail:lyh_1012@163.com。
通讯作者:徐冉(1967-),男,博士,研究员,主要从事大豆育种研究。E-mail:soybeanxu@126.com;
王效宁(1973-),男,研究员,主要从事作物分子育种研究。E-mail:wxning2599@163.com。

更新日期/Last Update: 2020-10-21