LIU Chen,WEI Ya-ting,YU Yue-hua,et al.Bioinformatics and Expression Analysis Under Stress of Soybean Glyma.05g22700.2 Gene[J].Soybean Science,2020,39(04):543-548.[doi:10.11861/j.issn.1000-9841.2020.04.0543]
大豆Glyma.05G222700.2基因生物信息学与逆境表达分析
- Title:
- Bioinformatics and Expression Analysis Under Stress of Soybean Glyma.05g22700.2 Gene
- 关键词:
- 大豆; Glyma.05G222700.2; 生物信息学; qRT-PCR; 盐胁迫
- Keywords:
- Soybean; Glyma.05G222700.2; Bioinformatics; qRT-PCR; Salt stress
- 文献标志码:
- A
- 摘要:
- 为研究Glyma.05G222700.2基因编码的丝氨酸/苏氨酸蛋白激酶在抗非生物胁迫过程的功能和原理,促进大豆抗逆候选基因的开发利用,本研究通过生物信息学方法对大豆Glyma.05G222700.2基因进行同源序列、蛋白结构、进化树和转录组分析,通过qRT-PCR分析盐胁迫下大豆不同组织中该基因的表达情况。结果表明:该基因编码区长2 040 bp,编码697个氨基酸,预测分子量为656.54 kD,pI8.026。多序列比对发现Glyma.05G222700.2蛋白包含1个Pkinase结构域。进化树分析表明该蛋白与野大豆、刺毛黧豆、赤豆一致性较高。转录组数据表明Glyma.05G222700.2基因在大豆各组织中均有表达,其中在种子中表达量最高,在根中表达量最低。qRT-PCR结果发现Glyma.05G222700.2基因在毛状根、茎、叶中均有表达,在茎中表达量最高,在叶中表达量最低;在毛状根中盐胁迫12 h表达量达到极值,盐胁迫24 h表达量下降;在茎中表达量呈上升趋势,在24 h表达量达到极值;在叶中表达量不稳定,盐胁迫2 h该基因不表达,盐胁迫6 h该基因表达量达到极值并高于对照,盐胁迫12和24 h表达量低于对照。推断该基因可能在大豆抵抗盐胁迫过程中起到重要作用。
- Abstract:
- In order to study the function and principle of serine/threonine protein kinase encoded by Glyma.05g22700.2 in the process of abiotic stress resistance, and promote the development and utilization of soybean stress resistant candidate genes, this study carried out the homology sequence, protein structure, phylogenetic tree and transcriptome analysis of soybean Glyma.05G222700.2 gene by bioinformatics method, and analyzed the expression in different tissues of soybean with qRT-PCR under salt stress. The results showed that the coding region of this gene was 2 040 bp, encoding 697 amino acids, with predicted molecular weight of 656.54 kD and pI8.026. Multiple sequence alignment revealed that the Glyma.05G222700.2 protein contained a Pkinase domain. Phylogenetic tree analysis showed that the protein had high consistency with wild soybean, mucuna, and red bean. Transcriptome data showed that the Glyma.05G222700.2 gene was expressed in various tissues of soybean, among which the expression level was the highest in seeds and the lowest in roots. Fluorescence quantitative PCR results showed that the Glyma.05G222700.2 gene was expressed in hairy roots, stems, and leaves under salt stress, with the highest expression in the stem and the lowest expression in the leaves. In the hairy roots, the expression reached the maximum at 12 h, and decreased at 24 h. The expression level in the stem increased and reached the maximum at 24 h. The expression of the gene was not stable in the leaves, and it didn′t express in the leaves for 2 h under salt stress. The expression of the leaves reached the extreme value at 6 h under salt stress and was higher than that of the control, and the expression under salt stress was lower than that of the control at 12 and 24 h. It is inferred that this gene may play an important role in the resistance of soybean to salt stress.
参考文献/References:
[1]Sébastien P, Faucher, Charles V, et al. The prpZ gene cluster encoding eukaryotic-type Ser/Thr protein kinases and phosphatases is repressed by oxidative stress and involved in salmonella enterica serovar Typhi survival in human macrophages[J]. FEMS Microbiology Letters, 2008, 281(2): 160-166.[2]Franz S,Ehlert B, Liese A, et al. Calcium-dependent protein kinase CPK21 functions in abiotic stress response in Arabidopsis thaliana[J]. Molecular Plant, 2011, 4(1): 83-96.[3]Schenk P W,Snaar B E. Signal perception and transduction: The role of protein kinases[J]. Biochimica Et Biophysica Acta-Biomembranes, 1999, 1449(1): 1-24.[4]Ferreira P C G,Hemerly A S, Villarroel R, et al. The Arabidopsis functional homolog of the p34 cdc2 protein kinase[J]. The Plant Cell, 1991, 3(5): 531-540.[5]Rudrabhatla P. Developmentally regulated dual-specificity kinase from peanut that is induced by abiotic stresses[J]. Plant Physiology, 2002, 130(1): 380-390.[6]Rudrabhatla P, Reddy M M, Rajasekharan R. Genome-wide analysis and experimentation of plant Serine/Threonine/Tyrosine specificprotein kinases[J]. Plant Molecular Biology, 2006, 60(2): 293-319.[7]He X J, Zhang Z G, Yan D Q, et al. A salt-responsive receptor-like kinase gene regulated by the ethylene signaling pathway encodes a plasma membrane serine/threonine kinase[J]. Theoretical and Applied Genetics, 2004, 109(2): 377-383.[8]陶晓迎, 柴晓杰, 薛飞, 等. 盐藻丝氨酸/苏氨酸蛋白激酶基因DsSTPK的克隆、原核表达及纯化[J]. 中国农学通报, 2014, 30(2): 45-49. (Tao X Y, Chai X J, Xue F, et al. Cloning, prokaryotic expression and purification of the dhalostem Serine/Threonine protein kinase gene DsSTPK[J]. Chinese Agricultural Science Bulletin, 2014, 30(2): 45-49.)[9]Hartley J L, Temple G F,Brasch M A. DNA cloning using in vitro site-specific recombination[J]. Genome Research, 2000, 10(11): 1788-1795.[10]许硕. 野生大豆盐胁迫相关microRNA的功能分析[D]. 北京: 中国农业科学院, 2011: 1-56. (Xu S. Functional analysis of microRNA related to salt stress in wild soybeans[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011: 1-56.)[11]Hai Y L, Yuan Y D, Hai L Y, et al. Characterization of the stress associated microRNAs in Glycine max by deep sequencing[J]. BMC Plant Biology, 2011, 11(1): 1-12.[12]刘晨, 唐洁, 王怡, 等. 大豆gma-miR4359b生物信息学分析及植物表达载体构建[J/OL]. 分子植物育种:1-8. [2020-06-26].http://kns.cnki.net/kcms/detail/46.1068.s.20191021.1710.004.html. (Liu C, Tang J, Wang Y, et al. Bioinformatics analysis of soybean gma-miR4359b and construction of plant expression vector[J]. Molecular Plant Breeding:1-8. [2020-06-26].http://kns.cnki.net/kcms/detail/46.1068.s.20191021.1710.004.html.)[13]Goodstein D M, Shu S, Howson R, et al. Phytozome: A comparative platform for green plant genomics[J]. Nucleic Acids Research, 2011, 40(1): 78-86.[14]王萍, 于月华, 白玉翠, 等. 大豆GmNAC23基因的克隆及特征分析[J]. 华北农学报, 2019, 34(1): 50-57. (Wang P, Yu Y H, Bai Y C, et al. Cloning and characterization of soybean GmNAC23 gene[J]. Journal of North China Agriculture, 2019, 34(1): 50-57.)[15]Kaján L, Yachdav G, Vicedo E, et al. Cloud prediction of protein structure and function with Predict Protein for debian[J]. Biomed Research International, 2013: 398968.[16]Biasini M, Bienert S, Waterhouse A, et al. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information[J]. Nucleic Acids Research, 2014, 42(W): 252-258.[17]倪志勇. 大豆抗逆相关miR169c及其靶位点GmNFYA3和miR394a的功能研究[D]. 北京: 中国农业科学院, 2013: 1-89. (Ni Z Y. Functional study of soybean stress resistance related miR169c and its target sites GmNFYA3 and miR394a[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013: 1-89.)[18]Hardie D G. Plant protein Serine/Threonine kinase: Classification and functions[J]. Annual Review of Plant Biology, 1999, 50(50): 97-131.[19]Dombrowski J E, Martin R C, et al. Abiotic stresses activate a MAP kinase in the model grass species lolium temulentum[J]. Journal of Plant Physiology, 2012, 169(9): 915-919.[20]Xiao L S, Qing Y Y, Li L T,et al. GsSRK, a G-type lectin S-receptor-like Serine/Threonine protein kinase, is a positive regulator of plant tolerance to salt stress[J]. Journal of Plant Physiology, 2015, 176: 505-515.[21]Yusuke S, Shingo H, Jen S,et al. cDNA cloning and prokaryotic expression of maize calcium-dependent protein kinases[J]. Biochimica Et Biophysica Acta Gene Structure and Expression, 1997, 1350(2): 109-114.[22]Hao J H, Shin F F, Ying H T, et al. Expression of Oryza sativa MAP kinase gene is developmentally regulated and stress-responsive[J]. Physiologia Plantarum, 2002, 114(4): 572-580.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(04):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(04):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(04):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(04):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(04):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(04):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(04):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(04):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(04):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(04):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
备注/Memo