WANG Yi-long,ZHAO Hai-hong,SHEN Ying-zi,et al.Cloning and Abiotic Expression Analysis of GmPHD3 Gene in Soybean[J].Soybean Science,2020,39(04):500-508.[doi:10.11861/j.issn.1000-9841.2020.04.0500]
大豆GmPHD3基因的克隆及逆境表达分析
- Title:
- Cloning and Abiotic Expression Analysis of GmPHD3 Gene in Soybean
- Keywords:
- Soybean; GmPHD3; Expression analysis; High temperature and humidity
- 文献标志码:
- A
- 摘要:
- 为探讨大豆PHD-finger转录因子家族编码基因GmPHD3在抵抗中国南方高温高湿非生物胁迫造成种子劣变过程中的调控作用,分离全长GmPHD3基因并进行生物信息学分析、亚细胞定位和转录激活活性分析,以种子劣变抗性品种湘豆3号和不抗品种宁镇1号叶片及不同组织cDNA为材料,通过RT-PCR,进行组织表达模式分析和高温高湿胁迫下的表达模式分析。生物信息学分析结果表明基因CDS序列长度为738 bp,编码246个氨基酸,包含Alfin和PHD-finger 2个结构域。进化树结果表明该基因与木豆ALFIN-Like 3-like(XM_020363358.1)的遗传距离较近。亚细胞定位结果显示该蛋白在细胞核内表达。转录激活试验结果表明基因全长有转录激活活性,激活域为N端Alfin结构域,C端PHD-finger结构域无转录激活活性。组织表达模式分析发现该基因主要在成熟期高表达,且2个品种间存在差异。胁迫下的表达模式分析发现随着胁迫时间的延长,基因的表达量逐渐升高。研究结果为进一步阐明高温高湿胁迫下的调控机制研究奠定一定理论基础。
- Abstract:
- In order to investigate the regulatory role of soybean PHD-finger transcription factor family coding gene GmPHD3 in resisting high temperature and humidity abiotic stress in seed degradation in southern China, we isolated the full-length GmPHD3 gene and conduct bioinformatics analysis, subcellular localization and transcriptional activation analysis. We used leaves and cDNAs of pre-harvest seed deterioration resistance varieties Xiangdou 3 and deterioration varieties Ningzhen 1 as materials to perform the tissue expression pattern analysis and expression pattern analysis under high temperature and humidity stress with RT-PCR. The results of bioinformatics analysis showed that the length of CDS sequence was 738 bp, encoding 246 amino acids, containing two domains of Alfin and PHD-finger. The results of the phylogenetic tree indicated that the genetic distance of this gene was close to that of pigeon pea ALFIN-Like 3-like (XM_020363358.1). Subcellular localization results showed that the protein was expressed in the nucleus. Transcription activation test results showed that the gene had transcription activation activity in the full length, the activation domain was the N-terminal Alfin domain, and the C-terminal PHD-finger domain had no transcription activation activity. Analysis of tissue expression patterns revealed that the gene was mainly expressed at maturity and there was a difference between the two varieties. Analysis of the expression pattern under stress showed that the relative expression of the gene gradually increased with the extension of stress time. The research results lay a theoretical foundation for further elucidating the research on the regulation mechanism under high temperature and humidity stress.
参考文献/References:
[1]查霆, 钟宣伯, 周启政, 等. 我国大豆产业发展现状及振兴策略[J]. 大豆科学, 2018, 37(3): 458-463. (Zha T, Zhong X B, Zhou Q Z, et al. Development status of China′s soybean industry and strategies of revitalizing[J]. Soybean Science, 2018, 37(3): 458-463.)[2]舒英杰, 周玉丽, 陶源, 等. 生理成熟期高温高湿胁迫对春大豆种子生理特性及种子劣变相关基因GmSbh1表达的影响[J]. 生态学杂志, 2016, 35(12): 3286-3292. (Shu Y J, Zhou Y L, Tao Y, et al. Effects of high temperature and humidity stress on the physiological characters of spring soybean seeds and the expression of seed deterioration-related gene GmSbh1 at the physiological maturity stage[J]. Chinese Journal of Ecology, 2016, 35(12): 3286-3292.)[3]宋利茹, 王爽, 牛娟, 等. 春大豆种子田间劣变性和劣变抗性的差异蛋白质组学研究[J]. 中国农业科学, 2015, 48(1): 23-32. (Song L R, Wang S, Niu J, et. al. Differentially proteomics analysis of pre-harvest seed deterioration and deterioration resistance in spring soybean[J]. Scientia Agricultura Sinica, 2015, 48(1): 23-32.)[4]朱雅婧, 周亚丽, 刘骕骦, 等. GmHMADP参与高温高湿下大豆种子活力形成及铜镉胁迫响应的研究[J]. 中国农业科学, 2018, 51(14): 2642-2654. (Zhu Y J, Zhou Y L, Liu S S, et al. GmHMADP involved in seed vigor formation of soybean under high temperature and humidity stress and its study responsive to copper and cadmium stress[J]. Scientia Agricultura Sinica, 2018, 51(14): 2642-2654.)[5]王芳, 王丽群, 田鑫, 等. 中国南方春大豆收获前后种子劣变的抗性研究[J]. 中国农业科学, 2007, 40(11): 2637-2647. (Wang F, Wang L Q, Tian X, et al. Pre-harvest and post-harvest seed deterioration resistance of spring soybean germplasm in South China[J]. Scientia Agricultura Sinica, 2007, 40(11): 2637-2647.)[6]Wang L Q, Ma H, Song L R, et al. Comparative proteomics analysis reveals the mechanism of pre-harvest seed deterioration of soybean under high temperature and humidity stress[J]. Journal of Proteomics, 2012, 75(7): 2109-2127.[7]Shu Y J, Tao Y, Wang S, et al. GmSBH1, a homeobox transcription factor gene, relates to growth and development and involves in response to high temperature and humidity stress in soybean[J]. Plant Cell Reports, 2015, 34(11): 1927-1937.[8]Chen M, Qian P P, Wang Z K, et al. Identifcation and functional analysis of soybean GmSBH1 gene promoter conferring high temperature and humidity-induced expression[J].Turkish Journal of Botany, 2019, 43: 431-443. [9]Schindler U, Beckmann H, Cashmore A R. HAT3.1, a novel Arabidopsis homeodomain protein containing a conserved cysteine-rich region[J]. The Plant Journal, 1993, 4(1):137-150.[10]Sun M Z, Jia B W, Yang J K, et al. Genome-wide identification of the PHD-finger family genes and their responses to environmental stresses in Oryza sativa L. [J]. International Journal of Molecular Sciences, 2017, 18: 2005.[11]Wang Q Q, Liu J Y, Wang Y, et al. Systematic analysis of the maize PHD-Finger gene family reveals a subfamily involved in abiotic stress response [J]. International Journal of Molecular Sciences, 2015, 16: 23517-23544.[12]杨珺凯, 沈阳, 才晓溪, 等. 大豆PHD家族蛋白的全基因组鉴定及表达特征分析[J]. 作物杂志, 2019(3): 55-65. (Yang J K, Shen Y, Cai X X, et al. Genome-wide identifcation and expression patterns analysis of the PHD family protein in Glycine max[J]. Crops, 2019(3): 55-65.)[13]Mariann B. The PHD finger, a nuclear protein-interaction domain[J]. Trends in Biochemical Sciences, 2005, 31(1): 35-40.[14]Sung S B, Schmitz R J, Amasina R M. A PHD finger protein involved in both the vernalization and photoperiod pathways in Arabidopsis[J]. Genes and Development, 2006, 20: 3244-3248.[15]Tao J J, Wei W, Pan W J, et al. An Alfn-like gene from Atriplex hortensis enhances salt and drought tolerance and abscisic acid response in transgenic Arabidopsis[J]. Scientific Reports, 2018, 8: 2707.[16]Sanchez R, Zhou M M. The PHD finger: A versatile epigenome reader[J]. Trends in Biochemical Sciences, 2011, 36(7): 364-372.[17]Wei W, Huang J, Hao Y J, et al. Soybean GmPHD-type transcription regulators improve stress tolerance in transgenic Arabidopsis plants[J]. PLoS One, 2009, 4(9): e7209.[18]Liu S S, Liu Y M, Jia Y H, et al. Gm1-MMP is involved in growth and development of leaf and seed, and enhances tolerance to high temperature and humidity stress in transgenic Arabidopsis[J]. Plant Science, 2017, 259: 48-61.[19]金玲, 张浩, 王松明, 等. 大豆GmAMS基因及其启动子的克隆和表达分析[J]. 大豆科学, 2019, 38(6): 889-897. (Jin L, Zhang H, Wang S M, et al. Cloning and expression analysis of GmAMS gene and its promoter in soybean[J]. Soybean Science, 2019, 38(6): 889-897.)[20]Chandrika N N P, Sundaravelpanddian K, Yu S M, et al. ALFIN-LIKE6 is involved in root hair elongation during phosphate deficiency in Arabidopsis[J]. The New phytologist, 2013, 198(3): 709-720.[21]Kim D H, Sung S B. The binding specificity of PHD-finger domain of VIN3 moderates vernalization response[J]. Plant Physiology, 2017, 173: 1258-1268.[22]Wei W, Fan Z Q, Chen J Y, et al. A banana PHD-type transcription factor MaPHD1 represses a cell wall-degradation gene MaXTH6 during fruit ripening[J]. Horticultural Plant Journal, 2017, 3(5): 190-198.[23]Wei W, Zhang Y Q, Tao J J, et al. The Alfin-like homeodomain finger protein AL5 suppresses multiple negative factors to confer abiotic stress tolerance in Arabidopsis[J]. The Plant Journal, 2015, 81(6): 871-883.[24]Wu T, Pi E X, Tsai S N, et al. GmPHD5 acts as an important regulator for crosstalk between histone H3K4 di-methylation and H3K14 acetylation in response to salinity stress in soybean[J]. BMC Plant Biology, 2011, 11(1): 178.[25]Wei W, Tao J J, Chen H W, et al. A histone code reader and a transcriptional activator interact to regulate genes for salt tolerance[J]. Plant Physiology, 2017, 175: 1304-1320.[26]Anne M M, Bu Z Y, Yu Y, at el. Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes[J]. PLoS Genetics, 2014, 10(1): e1004091.[27]Li Z C, Fu X, Wang Y Z, et al. Polycomb-mediated gene silencing by the BAH-EMF1 complex in plants[J]. Nature Genetics, 2018, 50(9): 1254-1261.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(04):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(04):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(04):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(04):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(04):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(04):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(04):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(04):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(04):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(04):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
备注/Memo