[1]陆潭,陈华涛,张威,等.耐低钾大豆品种筛选及低钾胁迫下Lee 68的差异表达基因分析[J].大豆科学,2020,39(04):489-499.[doi:10.11861/j.issn.1000-9841.2020.04.0489]
 LU-Tan,CHEN Hua-tao,ZHANG Wei,et al.Screening of Tolerant Soybean Varieties and Analysis of Differential Expressed Genes of Lee 68 Under Low-Potassium Stress[J].Soybean Science,2020,39(04):489-499.[doi:10.11861/j.issn.1000-9841.2020.04.0489]
点击复制

耐低钾大豆品种筛选及低钾胁迫下Lee 68的差异表达基因分析

参考文献/References:

[1]姜存仓, 王运华, 鲁剑巍, 等. 植物钾效率基因型差异机理的研究进展[J]. 华中农业大学学报, 2004, 23 (4):483-487. (Jiang C C, Wang Y H, Lu J W, et al. Advances of study on the K-efficiency indifferent plant genotypes [J] .Journal of Huazhong Agricultural University, 2004, 23(4) :483-487.)[2]黄初女, 金东淳, 董艺兰, 等.浅谈大豆蛋白质品质改良[J]. 吉林农业科学, 2006, 31(1) : 37-40.(Huang C N, Jin D C, Dong Y L, et al.Talking about the improvement of soybean protein quality[J]. Journal of Jilin Agricultural Sciences, 2006, 31(1): 37-40.)[3]李兴涛, 佟晓楠, 于海秋, 等. 不同低钾耐性大豆品种钾素效率的差异[J]. 大豆科学, 2014, 33(3): 385-388. (LI X T, Tong X N, Yu H Q, et al. Potassium efficiency of different low K tolerant soybean varieties[J]. Soybean Science, 2014, 33(3): 385-388.)[4]王利, 陈防, 万开元.植物钾效率及其评价的研究进展与展望[J].土壤, 2010, 42 (2):164 -170.(Wang L, Cheng F, Wang K Y. Progress and expectation of the research on plant K efficiency and its evaluation[J]. Soils, 2010, 42(2):164-170.)[5]Ahmad I,Maathuis F J. Cellular and tissue distribution of potassium: Physiological relevance, mechanisms and regulation[J]. Journal of Plant Physiology, 2014, 171(9): 708-714.[6]Wang Y, Wu W H. Regulation of potassium transport and signaling in plants[J]. Current Opinion in Plant Biology, 2017, 39(10): 123-128.[7]Marschnert H, Kirkby E A, Engels C. Importance of cycling and recycling of mineral nutrients within plants for growth and development[J]. Plant Biology, 2015, 110(4): 265-273.[8]Bari R, Jones J D. Role of plant hormones in plant defense responses[J]. Plant Molecular Biology, 2009, 69: 473-488.[9]Croucher N J, Fookes M C, Perkins T T, et al. A simple method for directional transcriptome sequencing using Illumina technology[J]. Nucleic Acids Research, 2009, 37(22):e148.[10]〖JP4〗Lopez-maestre H, Brinza L, Marchet C, et al. SNP calling from RNA-seq data without a reference genome: Identification, quantification, differential analysis and impact on the protein sequence[J]. Nucleic Acids Research, 2016, 44(19): 1-13.[11]李妍, 徐兴祥.高通量测序技术的研究进展[J].中国医学工程, 2019, 27(3):32-37.(Li Y, Xu X X. Research progress of high-throughput sequencing technology[J]. China Medical Engineering, 2019, 27(3):32-37.)[12]刘永杰, 王渊, 付强, 等. 高通量测序技术在病原生物学方面的研究进展[J]. 口岸卫生控制, 2019, 24(1):6-9.(Liu Y J, Wang Y, Fu Q, et al. Advances in high-throughput sequencing technology in the field of pathogen biology[J]. Port Health Control, 2019, 24(1):6-9.)[13]Park S T, Kim J. Trends in next-generation sequencing and a new era for whole genome sequencing[J]. International Neurourology Journal, 2016, 20(Supplement 2): 76-83.[14]Boycott K M, Vanstone M R, Bulman D E, et al. Rare-disease genetics in the era of next-generation sequencing: Discovery to translation[J]. Nature Review Genetic, 2013, 14(10): 681-691.[15]Müllauer L. Next generation sequencing: Clinical applications in solid tumours[J]. Magazine of European Medical Oncology, 2017, 10(4): 244-247.[16]岳桂东, 高强, 罗龙海, 等. 高通量测序技术在动植物研究领域中的应用[J]. 中国科学: 生命科学, 2012, 42(2):107-124. (Yue K D, Gao Q, Luo L H, et al.The application of High-throughput sequencing technology in plant and animal research [J].Scientia Sinica Vitae, 2012, 42(2):107-124.)[17]曹盈. 高通量测序技术在植物转录组研究中的应用[J]. 北京农业, 2013(6):6-7.(Cao Y. The application of high-throughput sequencing technology in plant transcriptome research[J]. Beijing Agriculture,2013(6):6-7.)[18]范秀朵. 基于高通量Illumina测序技术的干旱胁迫下大豆根和叶mRNA表达谱研究[D]. 吉林:吉林农业大学, 2011: 10-39. (Fan X D. Investigation of gene expression profiles of soybean leaves and roots under drought stress by high-throughput Illumina sequencing [D]. Jilin: Jinlin Agricultural University, 2011:10-39.)[19]吴冰月, 沈良, 宋普文, 等. 大豆RNA依赖的RNA聚合酶基因GmRDR1的克隆与表达特性分析[J]. 大豆科学, 2015,34(1):19-25. (Wu B Y, Shen L, Song P W, et al. Cloning and expression pattern analysis of a RNA-dependant RNA polymerase gene GmRDR1 in soybean[J]. Soybean Science, 2015,34(1):19-25.)[20]吴冰月, 宋普文, 陈华涛, 等. 2个大豆 RNA 依赖的 RNA 聚合酶基因GmRDR6a和GmRDR6b的克隆与分析[J]. 南京农业大学学报, 2014, 37(3) : 27-34. (Wu B Y, Song P W, Chen H T, et al. Cloning and expression pattern analysis of GmRDR6a and GmRDR6b in soybean[J]. Journal of Nanjing Agricultural University, 2014, 37(3): 27-34.)[21]Wang C, Chen H,Hao Q, et al. Transcript profile of the response of two soybean genotypes to potassium deficiency[J]. PLoS One, 2012, 7(7): e39856.[22]Cole T, Lior P, Steven L, et al. TopHat: Discovering splice junctions with RNA-Seq[J]. Bioinformatics, 2009, 25(9):1105-1111.[23]Wang Y H, Garvin D F, Kochian L V. Rapid induction of regulatory and transporter genes in response to phosphorus,potassium,and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals[J]. Plant Physiology, 2002, 130(3): 1361-1370.[24]Van Kleeff P J M, Gao J, Mol S, et al. The Arabidopsis GORK K+-channel is phosphorylated by calcium-dependent protein kinase 21(CPK21), which in turn is activated by 14-3-3 proteins[J]. Plant Physiology and Biochemistry, 2018, 125: 219-231.[25]Chini A, Fonseca S,Chico J M, et al. The ZIM domain mediates-homo-and heteromeric interactions between Arabidopsis JAZ proteins[J]. The Plant Journal, 2009, 59(1): 77-87.[26]Adams E, Turner J. Illuminating COI1: A component of the Arabidopsis jasomonate receptor complex also interacts with ethylene signaling[J]. Plant Signaling and Behavior, 2010, 5(12): 1682-1684.[27]王秀燕, 孙莉萍, 张建锋, 等. F-box蛋白家族及其功能[J]. 生命科学, 2008, 20(5): 807-811. (Wang X Y, Sun L P, Zhang J F, et al. F-box protein families and their functions[J]. Life Science, 2008, 20(5): 807-811.)[28]Staswick P E. JAZing up jasmonate signaling[J]. Trends in Plant Science, 2008, 13(2): 66-71.[29]Valenzuela-Riffo F, Garrido-Bigotes A, Figueroa P M, et al. Structural analysis of the woodland strawberry COI1-JAZ1 co-receptor for the plant hormone jasmonoyl-isoleucine[J]. Journal of Molecular Graphics and Modelling, 2018, 85: 250-261.[30]王克晶, 李向华.国家基因库野生大豆(Glycine soja)资源最近十年考察与研究[J].植物遗传资源学报, 2012(4): 507-514.(Wang K J, Li X H.Exploration and studies of wild soybean germplasm resources in the China genebank during recent decade[J]. Journal of Plant Genetic Resources, 2012(4): 507-514.)[31]徐晓燕, 唐迪. 耐盐性不同的大豆品种幼苗的蛋白质组学比较研究[J]. 江西农业大学学报, 2013, 35(1): 38-41. (Xu X Y, Tang D. Comparative analysis of proteomics in soybean cultivar seedlings with different salt resistance[J]. Acta Agriculturae Universitatis Jiangxiensis, 2013, 35(1): 38-41.)[32]Luo Q, Yu B, Liu Y. Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress [J]. Journal of Plant Physiology, 2005, 162(9):1003-1012.[33]Chen X Q, Yu B J, Liu Y L. Relationship between chloride tolerance and polyamine accumulation in Glycine max, Glycine soja, and their hybrid seedlings[J]. Journal of Plant Physiology and Molecular Biology, 2007, 33(1):46-52.[34]Ma H, Song L, Shu Y, et al. Comparative proteomic analysis of seedling leaves of different salt tolerant soybean genotypes [J]. Journal of Proteomics, 2012, 75(5):1529-1546.[35]Very A A, Nieves-Cordones M, Daly M, et al. Molecular biology of K+ transport across the plant cell membrane: What do we learn from comparison between plant species?[J]. Journal of Plant Physiology, 2014, 171(9): 748-769.[36]Chen G, Hu Q, Luo L, et al. Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges[J]. Plant, Cell and Environment, 2015, 38(12):2747-2765.[37]Chen H T, He H, Yu D Y. Overexpression of a novel soybean gene modulating Na+ and K+ transport enhances salt tolerance in transgenic tobacco plants[J]. Physiologia Plantrum, 2011, 141(1): 11-18.[38]Zhao S, Zhang M L, Ma T L, et al. Phosphorylation of ARF2 relieves its repression of transcription of the K+ transporter gene HAK5 in response to low potassium stress[J]. Plant Cell, 2016, 28(12):3005-3019.[39]Chen X, Li C, Wang H, et al. WRKY transcription factors: Evolution, binding, and action[J]. Phytopathology Research, 2019(1):1-13.[40]Huang H, Gao H, Liu B, et al. bHLH13 regulates jasmonate-mediated defense responses and growth[J]. Evolutionary Bioinformatics, 2018, 14: 1-8.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(04):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(04):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(04):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(04):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(04):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(04):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(04):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(04):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(04):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(04):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

收稿日期:2019-01-15
基金项目:国家自然科学基金(31401407)。
第一作者简介:陆潭(1990-),男,硕士,主要从事大豆生理及分子生物学研究。E-mail: 1134034827@qq.com。
通讯作者:陈新(1970-),男,博士,研究员,主要从事豆类作物新品种选育与配套栽培技术研究。E-mail: cx@jaas.ac.cn。

更新日期/Last Update: 2020-09-02