[1]李廷雨,黎永力,甘卓然,等.全基因组关联分析在大豆中的研究进展[J].大豆科学,2020,39(03):479-484.[doi:10.11861/j.issn.1000-9841.2020.03.0479]
 LI Ting-yu,LI Yong-li,GAN Zhuo-ran,et al.Research Progress of Genome-Wide Association Studies in Soybean[J].Soybean Science,2020,39(03):479-484.[doi:10.11861/j.issn.1000-9841.2020.03.0479]
点击复制

全基因组关联分析在大豆中的研究进展

参考文献/References:

[1]Zhang Y H, Liu M F, He J B, et al. Marker-assisted breeding for transgressive seed protein content in soybean [Glycine max (L.) Merr.][J]. Theoretical and Applied Genetics, 2015, 128(6): 1061-1072.[2]Juhi C, Patil G B, Humira S, et al. Expanding omics resources for improvement of soybean seed composition traits[J]. Frontiers in Plant Science, 2015, 6: 1021.[3]Risch N, Merikangas K. The future of genetic studies of complex human diseases[J]. Science, 1996, 273(5281): 1516-1517. [4]Hansen M, Kraft T,Ganestam S, et al. Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers[J]. Genetical Research, 2001, 77(1): 61-66.[5]Aranzana M J, Kim S, Zhao K Y, et al. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes[J]. PLoS Genetics, 2005, 1(5): e60.[6]Wang M, Yan J, Zhao J, et al. Genome-wide association study (GWAS) of resistance to head smut in maize[J]. Plant Science, 2012, 196: 125-131.[7]Morris G P,Ramu P, Deshpande S P, et al. Population genomic and genome-wide association studies of agroclimatic traits in sorghum[J]. Proceedings of the National Academy of Sciences, 2013, 110(2): 453-458.[8]Alqudah A M, Sharma R, Pasam R K, et al. Genetic dissection of photoperiod response based on GWAS of pre-anthesis phase duration in spring barley[J]. PLoS One, 2014, 9(11): 113-120.[9]Wu J H,Feng F J, Lian X M, et al. Genome-wide association study (GWAS) of mesocotyl elongation based on resequencing approach in rice[J]. BMC Plant Biology, 2015, 15(1): 218.[10]Zhou Y, Tang H, Cheng M P, et al. Genome-wide association study for pre-harvest sprouting resistance in a large germplasm collection of Chinese wheat landraces[J]. Frontiers in Plant Science, 2017, 8 (93): 401.[11]Hatzig S V, Frisch M, Breuer F, et al. Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus[J]. Frontiers in Plant Science, 2015, 6(221): 221.[12]Si W, Saleh A, lvaro C.I, et al. Combined use of genome-wide association data and correlation networks unravels key regulators of primary metabolism in Arabidopsis thaliana[J]. PLoS Genetics, 2016, 12(10): 1-36.[13]Schmutz J, Cannon S B,Chlueter J, et al. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010, 463(7278): 178-183.[14]Song Q,Hyten D L, Jia G, et al. Development and evaluation of SoySNP50K, a high-density genotyping array for soybean[J]. PLoS One, 2013, 8(1): e54985.[15]Hsiao C F, Chiu Y F, Chiang F T, et al. Genome-wide linkage analysis of lipids in nondiabetic Chinese and Japanese from the SAPPHIRe family study[J]. American Journal of Hypertension, 2006, 19(12): 1270-1277.[16]Gaut B S, Long A D. The lowdown on linkage disequilibrium[J]. The Plant Cell, 2003, 15(7): 1502-1506.[17]王荣焕, 王天宇, 黎裕. 关联分析在作物种质资源分子评价中的应用[J]. 植物遗传资源学报, 2016, 8(3): 366-372. (Wang R H, Wang T Y, Li Y. Application of association analysis in molecular evaluation of crop germplasm resources[J]. Journal of Plant Genetic Resources, 2016, 8(3): 366-372.) [18]Gaut B S, Long A D. The lowdown on linkage disequilibrium[J]. The Plant Cell, 2003, 15(7): 1502-1506.[19]Zondervan K T, Cardon L R. The complex interplay among factors that influence allelic association[J]. Nature Reviews Genetics, 2004, 5(2): 89-100. [20]谭贤杰, 吴子恺, 程伟东, 等. 关联分析及其在植物遗传学研究中的应用[J]. 植物学报, 2011, 46(1): 108-118. (Tan X J, Wu Z F, Cheng D W, et al. Association analysis and its application in plant genetics[J]. Chinese Bulletin of Botany, 2011, 46 (1): 108-118.)[21]Myles S, Peiffer J, Brown P J, et al. Association mapping: Critical considerations shift from genotyping to experimental design[J]. Plant Cell, 2009, 21(8): 2194.[22]Flint-Garcia S A, Thuillet A C, Yu J M, et al. Maize association population: A high-resolution platform for quantitative trait locus dissection[J]. Plant Journal, 2005, 44(6): 1054-1064.[23]Kriz A L, Larkins B A. Molecular genetic approaches to maize improvement[M]. Germany: Springer Berlin Heidelberg, 2009: 365-369.[24]Purcell S, Neale B, Todd-Brown K, et al. PLINK: A tool set for whole-genome association and population-based linkage analyses[J]. American Journal of Human Genetics, 2007, 81(3): 559-575.[25]Bradbury P J, Zhang Z, Kroon D E, et al. TASSEL: Software for association mapping of complex traits in diverse samples[J]. Bioinformatics, 2007, 23(19): 2633-2635.[26]Lyu H Y, Li H W, Fan R, et al. Genome-wide association study of dynamic developmental plant height in soybean[J]. Canadian Journal of Plant Science, 2017, 97(2): 308-315.[27]Jing Y, Zhao X, Wang J, et al. Identification of loci and candidate genes for plant height in soybean (Glycine max) via genome wide association study[J]. Plant Breeding, 2019, 138(6): 721-732.[28]Chang F G, Guo C, Zhang J et al. Genome-wide association studies for dynamic plant height and number of nodes on the main stem in summer sowing soybeans[J]. Frontiers in Plant Science, 2018, 9: 1184.[29]Shim S, Ha J, Kim M Y, et al. GmBRC1 is a candidate gene for branching in soybean [Glycine max (L.) Merrill][J]. Plant Genetics and Molecular Breeding, 2019, 20(1): 135.[30]Li Y H, Li D, Jiao Y Q, et al. Identification of loci controlling adaptation in Chinese soybean landraces via a combination of conventional and bioclimatic GWAS[J]. Plant Biotechnology Journal, 2019, 18(2): 389-401.[31]Pan L Y, He J B, Zhao T J, et al. Efficient QTL detection of flowering date in a soybean RIL population using the novel restricted two-stage multi-locus GWAS procedure[J]. Theoretical and Applied Genetics, 2018, 131(12): 2581-2599.[32]Zhang J P, Song Q J, Cregan P B, et al. Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm[J]. BMC Genomics, 2015, 16(1): 217.[33]Liu Z X, Li H H, Fan X H, et al. Phenotypic characterization and genetic dissection of growth period traits in soybean (Glycine max) using association mapping[J]. PLoS One, 2017, 256: 76-87.[34]Zhao X, Dong H R, Chang H, et al. Genome wide association mapping and candidate gene analysis for hundred seed weight in soybean [Glycine max (L.) Merrill] [J]. BMC Genomics, 2019, 20: 648.[35]Contreras R, Mora F, Mar O, et al. A genome-wide association study for agronomic traits in soybean using SNP markers and SNP-based haplotype analysis[J]. PLoS One, 2017, 12(2): e0171105.[36]Wen Z X, Boyse J F, Song Q J, et al. Genomic consequences of selection and genome-wide association mapping in soybean[J]. BMC Genomics, 2015, 16(1): 671.[37]Hu Z D, Kan G Z, Hu W, et al. Identification of loci and candidate genes responsible for pod dehiscence in soybean via genome-wide association analysis across multiple environments[J]. Frontiers in Plant Science, 2019, 10: 811.[38]Zhang T F, Teng F, Wu T T, et al. A combined linkage and GWAS analysis identifies QTLs linked to soybean seed protein and oil content[J]. International Journal of Molecular Sciences, 2019, 20(23): 5915.[39]Zhang K X, Liu S L, Li W B, et al. Identification of QTNs controlling seed protein content in soybean using multi-locus genome-wide association studies[J]. Frontiers in Plant Science, 2018, 9: 1690.[40]Zhang Y H, He J B, Meng S, et al. Identifying QTL-allele system of seed protein content in Chinese soybean landraces for population differentiation studies and optimal cross predictions[J]. Euphytica, 2018, 214(9): 157.[41]Li D, Zhao X, Han Y, et al. Genome-wide association mapping for seed protein and oil contents using a large panel of soybean accessions[J]. Genomics, 2018, 111(1): 90-95.[42]Zhao X, Chang H, Feng L, et al. Genome-wide association mapping and candidate gene analysis for saturated fatty acid content in soybean seed[J]. Plant Breeding, 2019, 138: 588-598.[43]Zhang D, Zhang H Y, Hu Z B, et al. Artificial selection on GmOLEO1 contributes to the increase in seed oil during soybean domestication[J]. PLoS Genetics, 2019, 15(7): e1008267.[44]Li S G, Xu H F, Yang J Y, et al. Dissecting the genetic architecture of seed protein and oil content in soybean from the Yangtze and Huaihe River Valleys using multi-locus genome-wide association studies[J]. International Journal of Molecular Sciences, 2019, 20(12): 3041.[45]Hwang E Y, Song Q, Jia G, et al. A genome-wide association study of seed protein and oil content in soybean[J]. BMC Genomics, 2014, 15(1): 1.[46]Dhanapal A, Ray J, Singh S, et al. Genome-wide association study (GWAS) of carbon isotope ratio (δ13C) in diverse soybean [Glycine max (L.) Merr.] genotypes[J]. Theoretical and Applied Genetics, 2015, 128(1): 73-91.[47]Zhang W, Liu X L, Cui Y M, et al. A cation diffusion facilitator, GmCDF1, negatively regulates salt tolerance in soybean[J]. PLoS Genetics, 2019, 15(1): e1007798.[48]Mamidi S, Lee R K, Goos J R, et al. Genome-wide association studies identifies seven major regions responsible for iron deficiency chlorosis in soybean (Glycine max)[J]. PLoS One, 2014, 9(9): e107469.[49]Zhang D, Song H, Cheng H, et al. The acid phosphatase-encoding gene GmACP1 contributes to soybean tolerance to low-phosphorus stress[J]. PLoS Genetics, 2014, 10(1): e1004061.[50]Wen Z, Tan R, Zhang S, et al. Integrating GWAS and gene expression data for functional characterization of resistance to white mold in soybean[J]. Plant Biotechnology Journal, 2018, 16(11): 1825-1835.[51]Zhang J, Wen Z, Li W, et al. Genome-wide association study for soybean cyst nematode resistance in Chinese elite soybean cultivars[J]. Molecular Breeding, 2017, 37(5): 60.[52]Santos J, Ferreira E, Passianotto A, et al. Association mapping of a locus that confers southern stem canker resistance in soybean and SNP marker development[J]. BMC Genomics, 2019, 20(1): 798.[53]Chu S S, Wang J, Zhu Y, et al. An R2R3-type MYB transcription factor, GmMYB29, regulates isoflavone biosynthesis in soybean[J]. PLoS Genetics, 2017, 13(5): e1006770.[54]Contreras R, Mora F, Mar O, et al. A Genome-wide association study for agronomic traits in soybean using SNP markers and SNP-based haplotype analysis[J]. PLoS One, 2017, 12(2): e0171105.[55]Yu J, Holland J B, Mc Mullen M D, et al. Genetic design and statistical power of nested association mapping in maize[J]. Genetics, 2008, 178(1): 539-551.[56]Yang J, Jiang H, Yeh C T, et al. Extreme-phenotype genome-wide association study (XP-GWAS): A method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel[J]. The Plant Journal, 2015, 84(3): 587-596.[57]Huang X, Wei X, Sang T, et al. Genome-wide association studies of 14 agronomic traits in rice landraces[J]. Nature Genetics, 2010, 42(11): 961-967.[58]Stacey J W, Joanna M B. Gene-environment interactions in Genome-Wide Association studies: Current approaches and new directions[J]. Journal of Child Psychology and Psychiatry, 2013, 54(10): 1120-1134.[59]Yang Q, Wu H S, Guo C Y, et al. Analyze multivariate phenotypes in genetic association studies by combining univariate as sociation tests[J]. Genetic Epidemiology, 2010, 34(5): 444-454.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(03):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(03):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(03):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(03):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(03):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(03):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(03):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(03):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(03):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(03):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]唐 威,熊雅文,李岩哲,等.大豆籽粒皂苷含量的全基因组关联分析[J].大豆科学,2023,42(03):291.[doi:10.11861/j.issn.1000-9841.2023.03.0291]
[12]王象然,张大勇,郑伟,等.代表性春大豆种质资源叶片蔗糖含量全基因组关联分析[J].大豆科学,2024,43(01):13.[doi:10.11861/j.issn.10009841.2024.01.0013]
[13]王存虎,许潇,许锐能,等.基于CIELAB的大豆种皮颜色全基因组关联分析[J].大豆科学,2024,43(06):674.[doi:10.11861/j.issn.1000-9841.2024.06.0674]

备注/Memo

收稿日期:2019-12-25
基金项目:国家自然科学基金(31771815)。
第一作者简介:李廷雨(1992-),男,硕士,主要从事光周期调控大豆开花分子机理研究。E-mail:1689763520@qq.com。
通讯作者:刘宝辉(1964-),男,博士,教授,博导,主要从事光周期调控大豆开花和重要农艺性状分子机理研究。E-mail:liubh@gzhu.edu.cn。

更新日期/Last Update: 2020-07-14