CHEN Wen-jie,CHEN Yuan,WEI Qing-yuan,et al.Occurrence Characteristics and Identification of Resistant Materials for Soybean Crinkle Leaf Disease[J].Soybean Science,2020,39(03):431-441.[doi:10.11861/j.issn.1000-9841.2020.03.0431]
一种大豆皱叶症发生特性及材料症级鉴定
- Title:
- Occurrence Characteristics and Identification of Resistant Materials for Soybean Crinkle Leaf Disease
- Keywords:
- Soybean; Crinkle leaf disease; Crinkle leaf index; Occurrence characteristics; Identification
- 文献标志码:
- A
- 摘要:
- 两广等地大豆生产上遇到一种大豆皱叶症,这种皱叶症可在该地区同一个材料上成片发生,导致单株叶面积降低,影响大豆生产。为研究这种大豆皱叶症发生特性,采用随机区组试验设计,利用皱叶症状稳定的华春10号和中黄320以及2018-2019年广西区试和南方区试材料,研究不同播期、不同生长时期、不同环境下的皱叶症变化,并利用皱叶指数进行皱叶症级材料鉴定。结果表明:大豆皱叶的发生受播种时期影响较小,苗期不表现皱叶,生长中期皱叶表现最为严重,后期有减轻的趋势。大豆皱叶症在不同年份年间遗传率98.37%,不同地点间遗传率为99.51%,皱叶指数高(高感)和不皱叶(免疫)的材料在多年间表现稳定,而皱叶指数中等的材料不同年份间变化较大。大豆皱叶症发生具有地域性,广西8个春大豆区试点中有4个点有皱叶发生,发生皱叶区域的皱叶比率有所不同,皱叶比率最高的为贺州,高感材料在发生皱叶症区域皱叶程度变化较小。2018-2019年广西春、夏大豆区试参试材料平均皱叶比率分别为50.00%和50.84%;2018-2019年南方春、夏大豆区试大豆皱叶比率均值分别为65.00%和100.00%。通过对材料皱叶指数分级,鉴定出2份表现稳定的高感材料华春10号和桂夏豆119,以及表现免疫的桂1603等7份材料,这些材料为进一步开展大豆皱叶症研究奠定材料基础。
- Abstract:
- A soybean crinkle leaf disease (SCLD) appeared in some places such as Guangxi and Guangdong. SCLD could occur in large areas on the same material, which could decrease soybean yield seriously. In order to research on the occurrence characteristics of the SCLD, this study carried out different sowing time, different growth stage and different environments into experiments of randomized block design. Two crinkle leaf materials performed stablely named Huachun 10 and Zhonghuang 320, and together with 50 soybean materials (tested in Guangxi soybean regional test and regional soybean test in south China in 2018-2019) were used in these experiments. Results showed that the occurrence of SCLD was influenced by sowing time slightly. SCLD did not appear in seeding stage, but occurred seriously in mid growth stage and tended slightly in late growth stage. The heritability of SCLD in different years were 98.37% and 99.51% in different places. High sensitive and immune materials appeared stably in different years. Middle types changed greatly and SCLD occurred regionally. The occurrence of SCLD were found in four of eight places during Guangxi soybean regional test in 2019. The crinkle leaf ratios (CLRs) were different in different places and it was the highest in Hezhou. Crinkle leaf degree of high sensitive materials changed more slightly. The average CLR of spring and summer soybean materials in Guangxi soybean regional test was 50.00% and 50.84% respectively,and it was 65.00% and 100.00% in regional soybean test in south China. Two high sensitive materials named Huachun 10 and Guixiadou 119, and seven immune materials such as Gui 1603 were identified, which could be used for further research on SCLD.
参考文献/References:
[1]张明厚, 吕文清, 魏培文. 我国大豆病毒病发生, 危害情况发展趋势及其原因分析和防治建议[J]. 大豆科学, 1986, 5(11): 305-314. (Zhang M H, Lyu W Q, Wei P W. The occurrence and developing tendency of soybean virus disease in China and suggestion for the disease management[J]. Soybean Science, 1986, 5(11): 305-314.)[2]Campos R E,Bejerman N, Nome C, et al. Bean yellow mosaic virus in soybean from Argentina[J]. Journal of Phytopathology, 2013, 162: 322-325.[3]Yang X D,Niu L, Zhang W, et al. Increased multiple virus resistance in transgenic soybean overexpressing the double-strand RNA-specific ribonuclease gene PAC1[J]. Transgenic Research,2019,28:129-140.[4]Kelley K B, Wax L M, Hager A G, et al. Soybean response to plant growth regulator herbicides is affected by other post emergence herbicides[J]. Weed Science, 2005, 53: 101-112.[5]Andrew P R, David M S, William G J. Response of Glyphosate-tolerant soybean yield components to dicamba exposure[J]. Weed Science, 2013, 61(4): 526-536.[6]Alanna B S, Benjamin P S, Daniel B R, et al. Effect of soybean growth stage on sensitivity to sublethal rates of dicamba and 2,4-D[J]. Weed Technology, 2019, 33(4): 555-561.[7]Elcio F S, José M K S, Amanda P P, et al. Physiological highlights of manganese toxicity symptoms in soybean plants: Mntoxicityresponses[J]. Plant Physiology and Biochemistry, 2017, 113: 6-19.[8]聂智星, 代金英, 吉家正, 等. 大豆叶突变体abl-CT的发掘与特性分析[J]. 江苏农业科学, 2013, 41(1): 86-88. (Nie Z X, Dai J Y, Ji J Z, et al. Excavation and characteristic analysis of soybean leaf mutant abl-CT[J]. Jiangsu Agricultural Science, 2013, 41(1): 86-88. )[9]Song X F, Wei H C, Cheng W, et al. Development of indel markers for genetic mapping based on whole genome resequencing in soybean[J]. Genes Genomes Genetics, 2015, 5(12): 2793-2799.[10]王大刚,李凯,智海剑.大豆抗大豆花叶病毒病基因研究进展[J].中国农业科学, 2018, 51(16): 3040-3059. (Wang D G, Li K, Zhi H J. Progresses of resistance on soybean mosaic virus in soybean[J]. Scientia Agricultura Sinica, 2018, 51(16): 3040-3059.)[11]唐向民, 杨守臻, 陈怀珠, 等. 160份广西春大豆种质对大豆花叶病毒株系SC15和SC18的抗性评价[J].大豆科学, 2019, 38(2): 181-188,197. (Tang X M, Yang S Z, Chen H Z, et al. Resistance evaluation of 160 Guangxi spring-sowing soybean germplasms to soybean Mosaic Virus strains SC15 and SC18[J].Soybean Science, 2019, 38(2): 181-188,197.)[12]邱丽娟, 常汝镇. 大豆种质资源描述规范和数据标准[M]. 北京: 中国农业出版社, 2006: 76-77. (Qiu L J, Chang R Z. Descriptors and data standard for soybean (Glycine spp.)[M]. Beijing: China Agriculture Press, 2006: 76-77.)[13]盖钧镒. 试验统计方法[M]. 北京: 中国农业出版社, 2000: 248-252. (Gai J Y. Test statistical method[M]. Beijing: China Agriculture Press, 2006: 76-77.)[14]张英虎,孟珊,贺建波,等.大豆重组自交系群体NJRSXG百粒重超亲分离的遗传解析[J].中国农业科学, 2015, 48(22): 4408-4416. (Zhang Y H, Meng S, He J B, et al. The genetic constitution of transgressive segregation of the 100-seed weight in a recombinant inbred line population NJRSXG of soybean[J]. Scientia Agricultura Sinica, 2015, 48(22): 4408-4416. )[15]Hanson C, Robinson H, Comstock R, et al. Biometrical studies of yield in segregating populations of Korean lespedeza[J]. Agronomy Journal, 1956, 48(6): 268-272.[16]Elcio F S, José M K S, Amanda P P, et al. Physiological highlights of manganese toxicity symptoms in soybean plants: Mn toxicity responses[J]. Plant Physiology and Biochemistry, 2017, 113: 6-19.[17]申宏波, 文景芝, 苗兴芬, 等. 黑龙江省大豆新品系双抗大豆灰斑病、疫霉病鉴定[J].大豆科学, 2007(1): 107-110. (Shen H B, Wen J Z, Miao X F, et al. Identification of resisting to both C.Sojia and Phytophthora rot of new soybean lines in Heilongjiang[J]. Soybean Science, 2007(1): 107-110.)[18]陈文杰,梁江,钟开珍,等.大豆抗花叶病毒材料初步筛选及评价[J].大豆科学, 2012, 31(4): 617-620. (Chen W J, Liang J, Zhong K Z, et al. Preliminary selection and evaluation for Glycine max resistant to soybean mosaic virus[J]. Soybean Science, 2012, 31(4): 617-620.)[19]李穆, 刘念析, 岳岩磊, 等. 抗大豆白粉病南方栽培大豆种质资源的初步筛选[J].大豆科学, 2016, 35(2): 209-212,221. (Li M, Liu N X, Yue Y L, et al. Preliminary screening for resistant soybean cultivars to powdery mildew in southern China[J]. Soybean Science, 2016, 35(2): 209-212,221.)[20]单志慧, 刘艳, 巴红平, 等. 一个大豆锈病新抗源的筛选与鉴定[J].中国油料作物学报, 2012, 34(2): 188-192. (Shan Z H, Liu Y, Ba H P, et al. New soybean germplasm resistance to Phakopsora pachyrhizi Syd[J]. Chinese Journal of Oil Crop Sciences, 2012, 34(2): 188-192.)[21]魏玮, 张艳娇, 李长育, 等. 大豆抗细菌性斑疹病抗性鉴定以及抗病相关QTL定位[J].分子植物育种, 2018, 16(18): 5978-5986. ( Wei W, Zhang Y J, Li C Y, et al. Resistance identification of soybean to bacterial rashes and QTL mapping of disease resistance[J]. Molecular Plant Breeding, 2018, 16(18): 5978-5986.)[22]王大刚, 陈圣男, 黄志平, 等. 193份大豆品系对SMV抗性鉴定与分子标记检测[J].分子植物育种, 2019,17(24):8138-8151. (Wang D G, Chen S N, Huang Z P, et al. Identification and molecular detection of soybean mosaic virus resistance of 193 soybean lines[J]. Molecular Plant Breeding, 2019,17(24):8138-8151.)
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(03):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(03):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(03):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(03):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(03):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(03):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(03):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(03):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(03):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(03):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
备注/Memo