YIN Zhen-gong,WANG Qiang,MENG Xian-xin,et al.Candidate Gene Mining of Soybean Node Numbers on the Main Stem Based on Overview and Physical Map of Soybean Genome[J].Soybean Science,2020,39(03):370-376.[doi:10.11861/j.issn.1000-9841.2020.03.0370]
基于Overview和物理图谱的大豆主茎节数候选基因挖掘
- Title:
- Candidate Gene Mining of Soybean Node Numbers on the Main Stem Based on Overview and Physical Map of Soybean Genome
- Keywords:
- Soybean; Node numbers; QTL; Overview; Candidate gene
- 文献标志码:
- A
- 摘要:
- 利用与大豆主茎节数性状相关的54个原始QTL位点,应用Overview方法首次以大豆参考基因组物理图谱为背景进行整合和分析,得到11个重演性较好的置信区间,分布在大豆D1b、C2、B1、F、L和I连锁群上,其中L连锁群重演性较好的置信区间较多。对得到的候选区段进行基因注释得到488个候选基因,其中Glyma.11G087300、Glyma.20G014300、Glyma.13G221400、Glyma.06G243500、Glyma.13G052900、Glyma.13G052700参与植物激素信号转到通路(ID: Ko04075),推测这6个基因通过该通路的赤霉素途径和生长素途径参与大豆主茎节数的遗传调控。本研究所挖掘到的与茎生长发育及主茎节数直接相关的通路和候选基因能够为构建理想株型和大豆分子辅助育种提供新思路。
- Abstract:
- This study integrated and analysisd 54 QTLs related to node numbers on main stem based on the physical map of soybean reference genome for the first time. 11 confidence intervals with good reproducibility were obtained by overview analysis on the D1b, C2, B1, F, L and I linkage groups, and the L-linked group had more reciprocal confidence intervals. Gene annotation of the obtained candidate segments yielded 488 candidate genes, among which Glyma.11G087300, Glyma.20G014300, Glyma.13G221400, Glyma.06G243500, Glyma.13G052900 and Glyma.13G052700 participated in the plant hormone signal transduction (ID: Ko04075). It was speculated that these six genes play the genetic regulation role of soybean main stem through the gibberellin pathway and the auxin pathway. The pathways and candidate genes directly related to stem growth and number of main stem segments discovered in this study will provide new ideas for the construction of ideal plant type and soybean molecular assisted breeding.
参考文献/References:
[1]Hoeck J A, Fehr W R, Shoemaker R C, et al. Molecular marker analysis of seed size in soybean[J]. Crop Science, 2003, 43(1): 68-74.[2]Zhang W K, Wang Y J, Luo G Z, et al. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers[J]. Theoretical and Applied Genetics, 2004, 108(6): 1131-1139.[3]Kornegay J, White J W, Cruz O O. Growth habit and gene pool effects on inheritance of yield in common bean[J]. Euphytica, 1992, 62(3): 171-180.[4]Chardon F,Virlon B, Moreau L, et al. Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome[J]. Genetics, 2004, 168(4): 2169-2185.[5]王毅. 玉米本地化生物信息库的构建和QTL的整合、比较及元分析[D]. 武汉: 华中农业大学, 2006.(Wang Y. The construction of local maize bioinformatics database and integration, comparison and meta-analysis of QTL[D]. Wuhan: Huazhong Agricultural University, 2006.)[6]高利芳, 郭勇, 郝再彬, 等. 大豆株高QTL的“整合”及Overview分析[J]. 遗传, 2013, 35(2): 215-224. (Gao L F, Guo Y, Hao Z B, e al. Integration and “Overview” analysis of QTLs related to plant height in soybean[J]. Hereditas, 2011, 30(1): 1-7.)[7]李莹莹, 李瑞超, 程春光, 等. 大豆荚粒数相关QTL的Meta和Overview分析及其候选基因预测[J]. 农业生物技术学报, 2018, 26(11): 1821-1833. (Li Y Y, Li R C, Cheng C G, et al. Meta and overview analysis of QTL associated with pod and seed traits and candidate gene mining in soybean (Glycine max) [J]. Journal of Agricultural Biotechnology, 2018, 26(11): 1821-1833.)[8]Qin H, Liu Z, Wang Y, et al. Meta-analysis and overview analysis of quantitative trait locis associated with fatty acid content in soybean for candidate gene mining[J]. Plant Breeding, 2018, 137(2): 181-193.[9]O′connor D L, Elton S, Ticchiarelli F, et al. Cross-species functional diversity within the PIN auxin efflux protein family[J]. Elife, 2017, 6: e31804.[10]Gil P, Green P J. Regulatory activity exerted by the SAUR-AC1 promoter region in transgenicplants[J]. Plant Molecular Biology, 1997, 34(5): 803-808.[11]Hu W, Yan H, Luo S, et al. Genome-wide analysis of poplar SAUR gene family and expression profiles under cold, polyethylene glycol and indole-3-acetic acid treatments[J]. Plant Physiology and Biochemistry, 2018, 128: 50-65.[12]Wang M, Sun S, Wu C, et al. Isolation and characterization of the brassinosteroid receptor gene (GmBRI1) from Glycine max[J]. International Journal of Molecular Sciences, 2014, 15(3): 3871-3888.[13]Liu X, Feng Z M, Zhou C L, et al.Brassinosteroid (BR) biosynthetic gene lhdd10 controls late heading and plant height in rice (Oryza sativa L.)[J]. Plant Cell Reports, 2016, 35(2): 357-368.[14]Ma H,Yanofsky M F, Meyerowitz E M. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes[J]. Genes and Development, 1991, 5(3): 484-495.[15]Chen Q S, Zhang Z C, Liu C Y, et al. QTL analysis of major agronomic traits in soybean[J]. Agricultural Sciences in China, 2007, 6(4): 399-405.[16]Li D, Sun M, Han Y, et al. Identification of QTL underlying soluble pigment content in soybean stems related to resistance to soybean white mold (Sclerotinia sclerotiorum)[J]. Euphytica, 2010, 172(1): 49-57.[17]Li Y L, Lin Y S, Huang P L, et al. Two paralogous genes encoding auxin efflux carrier differentially expressed in bitter gourd (Momordica charantia)[J]. International Journal of Molecular Sciences, 2017, 18(11): 2343.[18]Singh K, Singh J, Jindal S, et al. Structural and functional evolution of an auxin efflux carrier PIN1 and its functional characterization in common wheat[J]. Functional and Integrative Genomics, 2019, 19(1): 29-41.[19]Nardeli S M, Artico S, Aoyagi G M, et al. Genome-wide analysis of the MADS-box gene family in polyploid cotton (Gossypium hirsutum) and in its diploid parental species (Gossypium arboreum and Gossypium raimondii)[J]. Plant Physiology and Biochemistry, 2018, 127:169-184.[20]Mandel M A,Yanofsky M F. The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1[J]. Plant Cell, 1995, 7(11): 1763-1771.[21]Schmitz J,Franzen R, Ngyuen T H, et al. Cloning, mapping and expression analysis of barley MADS-box genes[J]. Plant Molecular Biology, 2000, 42(6): 899-913.[22]Heuer S, Hansen S, Bantin J, et al. The maize MADS box gene ZmMADS3 affects node number and spikelet development and is co-expressed with ZmMADS1 during flower development, in egg cells, and early embryogenesis[J]. Plant Physiology, 2001, 127(1): 33-45.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(03):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(03):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(03):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(03):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(03):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(03):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(03):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(03):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(03):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(03):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]闫昊,王博,刘宝泉.大豆主茎节数、节间长度遗传分析及与株高关系研究[J].大豆科学,2010,29(06):942.[doi:10.11861/j.issn.1000-9841.2010.06.0942]
YAN Hao,WANG Bo,LIU Bao-quan.Heredity of Soybean Nodes of Main Stem and Internode Length also Its Correlation with Plant Height[J].Soybean Science,2010,29(03):942.[doi:10.11861/j.issn.1000-9841.2010.06.0942]
备注/Memo