LIU Xiao,WANG Li,WANG Tian-shu,et al.Preliminary Screening and Root Characteristics Analysis of Compaction Resistance Soybean Varieties in Huanghuaihai[J].Soybean Science,2020,39(03):329-340.[doi:10.11861/j.issn.1000-9841.2020.03.0329]
黄淮海耐压实大豆品种的初步筛选及根系特征分析
- Title:
- Preliminary Screening and Root Characteristics Analysis of Compaction Resistance Soybean Varieties in Huanghuaihai
- Keywords:
- Soil compaction; Soybean; Compaction resistant varieties; Agronomic traits; Root morphology characteristics
- 文献标志码:
- A
- 摘要:
- 黄淮海地区加大机械化耕种收力度的同时也造成了更严重的土壤压实,为给耐压大豆品种的选育提供参考,利用华北地区自1920年以来的25个大豆品种,从根系的调控机制出发,对机械压实条件下大豆的地上部生物性状以及根系特征进行分析。研究表明:供试品种中有10个(上蔡二糙平顶式、益都平顶黄、文丰7号、豫豆8号、鲁豆11、晋豆25、冀豆12、郑92116、菏豆13和冀豆17)具有较好的抗压实性能。这些耐压实品种地上部生物性状表现为植株矮化,茎粗加大,主茎节数和地上部生物量不减。地下部根系表现为根系最大宽度、根面积、水平生长空间增加,或侧根数、根尖数增加。说明根系通过针对性的自我调控来适应压实环境,满足逆环境下对土壤水肥气的有效吸收,从而维持地下和地上部的生物量,保障作物的稳产。本研究能够为新时代机械化耕种收条件下大豆育种提供数据支撑及理论依据,具有一定的生产指导意义。
- Abstract:
- The increase of mechanized cultivation has resulted in serious soil compaction in the Huanghuaihai Plain. In order to provide reference for the selection of pressure resistant soybean varieties in terms of root regulation mechanisms, plant biological properties and root characteristics of soybean under mechanical compaction were analyzed and 25 soybean varieties since 1920 in North China were used. The result showed that there were 10 of the tested varieties (Shangcaiercaopingdingshi, Yidupingdinghuang, Wenfeng 7, Yudou 8, Ludou 11, Jindou 25, Jidou 12, Zheng 92116, Hedou 13 and Jidou 17) showed good compaction resistance. The plant biological properties of these compaction resistant varieties showed dwarfing of plants, increased stem diameter and main stem nod number, and maintained plant biomass. The root system showed the increased maximum root width, root area, horizontal growth space, or the increase in the number of lateral roots and root tips. The root system adapts to the compaction environment through self-regulation to effectively absorb soil water, fertilizer and gas from soil under the adverse environment, so as to maintain the biomass of aerial part and root, ensure the yield of crops. This study provides data support and theoretical basis for soybean breeding under the mechanized cultivation conditions in the new era, and has certain guiding significance for production.
参考文献/References:
[1]刘爱杰. 推进农业机械化发展农业现代化[J]. 北京农业, 2013(24): 185. (Liu A J. Advancing agricultural mechanization and developing agricultural modernization[J]. Beijing Agriculture, 2013(24): 185.)[2]于新诚.农业机械化在农业现代化中的作用[J].时代农机,2016(3):15,17. (Yu X C. The function of agricultural mechanization in the agricultural modernization[J]. Times Agricultural Machinery, 2016 (3): 15,17.)[3]佚名.2015年河南省粮食生产机械化率将达80%[J]. 乡村科技, 2012(10): 5. (Anon.Mechanization rate of grain production of Henan province will reach 80% in 2015[J] .Village Science and Technology, 2012 (10): 5.)[4]农业农村部. 到2020年, 河北省农作物耕种收综合机械化水平将升至83%以上[EB/OL]. [2019-09-19]. http://www.moa.gov.cn/xw/qg/201909/t20190919_6328310.htm. (Ministry of Agriculture and Rural Areas. By 2020, the comprehensive mechanization level of crop cultivation and harvesting in Hebei province will rise to more than 83% [EB/OL]. [2019-09-19]. http://www.moa.gov.cn/xw/qg/ 201909/t20190919_6328310.htm.)[5]杨晓娟,李春俭.机械压实对土壤质量,作物生长,土壤生物及环境的影响[J].中国农业科学, 2008, 41(7): 2008-2015. (Yang X J, Li C J. Effect of mechanical compaction on soil quality, crop growth, soil biology and environment[J]. China Agricultural Science, 2008, 41(7): 2008-2015.)[6]张兴义, 隋跃宇. 土壤压实对农作物影响概述[J]. 农业机械学报, 2005, 36(10):161-164. (Zhang X Y, Sui Y Y. Overview of the Impact of soil compaction on crops[J] .Transactions of the Chinese Society of Agricultural Machinery, 2005, 36(10): 161-164.)[7]Batey T. Soil compaction and soil management a review[J]. Soil Use and Management, 2009, 25: 335-345. [8]张艳丽.分析河南大豆产业发展现状及对策[J].农民致富之友, 2018(12):19. (Zhang Y L. Analysis of the current situation and countermeasures of Henan soybean industry development[J]. Friends of Farmers to Get Rich, 2018(12): 19.)[9]梁苏宁, 沐森林, 金诚谦, 等. 黄淮海地区大豆生产机械化现状与发展趋势[J].农机化研究, 2015, 37(1): 261-264, 268. (Liang S N, Mu S L, Jin C Q, et al. Current situation and development trend of soybean production mechanization in Huanghuaihai area[J]. Agricultural Mechanization Research, 2015, 37(1): 261-264, 268.)[10]冯飞燕, 侯俊杰. 大豆生产全程机械化技术研究[J].农机化研究, 2020, 42(1): 261-264. (Feng F Y, Hou J J. Research on the whole process mechanization technology of soybean production[J]. Agricultural Mechanization Research, 2020, 42(1):261-264.[11]王辽卫. 新年度我国大豆进口或现15年来首降[N]. 粮油市场报,2018-05-12(A3). (Wang L W. China′s soybean import in the new year or the first drop in recent 15 years [N]. Grain and Oil Market Report, 2018-05-12(A3).)[12]钟钰.打好政策组合拳实现大豆产业振兴[N]. 粮油市场报,2019-05-11(B1).(Zhong Y. Make good policy combination to realize the revitalization of soybean industry [N]. Grain and Oil Market Report, 2019-05-11 (B1).)[13]李孟霞,文国松,李永忠.作物对土壤压实胁迫响应研究进展[J].山东农业科学, 2019, 51(1): 154-160, 167. (Li M X, Wen G S, Li Y Z. Research progress of crop response to soil compaction stress[J]. Shandong Agricultural Science, 2019, 51(1): 154-160, 167.)[14]任海红, 马俊奎, 刘学义, 等. 山西省审定大豆品种主要农艺性状、产量及品质的演变分析[J]. 中国油料作物报, 2018, 40(6): 762-768. (Ren H H, Ma J K, Liu X Y, et al. Analysis on the evolution of main agronomic characters, yield and quality of approved soybean varieties in Shanxi province[J]. Chinese Journal of Oil Crops, 2018, 40(6): 762-768.)[15]龚振平, 沈昌蒲, 赵福华. 大豆肥田机制的研究——Ⅱ.常规技术条件下大豆根系动态[J].大豆科学, 2000, 19(4): 351-355. (Gong Z P, Shen C P, Zhao F H. Study on the mechanism of soybean fertilizer field Ⅱ. Soybean root dynamics under conventional technical conditions[J]. Soybean Science, 2000 ,19(4): 351-355.)[16]金剑, 刘晓冰, 王光华. 不同熟期大豆R4-R5期冠层某些生理生态性状与产量的关系[J]. 中国农业科学, 2004, 37(9): 1293-1300. (Jin J, Liu X B, Wang G H. The relationship between some physiological and ecological characters of soybean canopy and yield at different ripening stages[J]. China Agricultural Science, 2004, 37(9): 1293-1300.)[17]裴占江, 李淑芹, 佟玉新, 等. 大豆生育期农艺性状与产量相关性研究[J]. 东北农业大学学报, 2007, 38(3): 299-303. (Pei Z J, Li S Q, Tong Y X, et al. Study on correlation between agronomic characters and yield in soybean growth period[J]. Journal of Northeast Agricultural University, 2007, 38(3): 299-303.)[18]王彩洁, 孙石, 金素娟, 等. 中国大豆主产区不同年代大面积种植品种的遗传多样性分析[J]. 作物学报, 2013, 39(11): 1917-1926. (Wang C J, Sun S, Jin S J, et al. Analysis of genetic diversity of large-area varieties planted in different years in major soybean producing areas of China[J]. Acta Agronomica Sinica, 2013, 39 (11): 1917-1926.)[19]李亮,陈宗金,王瑞东,等.山东东平种植大豆新品种的农艺性状与产量[J].中国农技推广, 2019, 35(6): 30-32. (Li L, Chen Z J, Wang R D, et al. Agronomic characters and yield of new soybean varieties planted in Dongping, Shandong[J]. China Agricultural Technology Promotion, 2019, 35(6): 30-32.)[20]Chantal A, Marie, Larry M, et al. Shovelomics root traits assessed on the EURoot maize panel are highly heritable across environments but show low genotype-by-nitrogen interaction[J]. Euphytica, 2019, 215(10): 173.[21]Arifuzzaman M, Oladzadabbasabadi A, McClean P, et al. Shovelomics for phenotyping root architectural traits of rapeseed/canola(Brassica napus L.) and genome-wide association mapping[J]. Molecular Genetics and Genomics, 2019, 294(4): 3.[22]王宪良,王庆杰,李洪文,等.免耕条件下轮胎压实对土壤物理特性和作物根系的影响[J].农业机械学报,2017,48(6):168-175. (Wang X L, Wang Q J, Li H W, et al. Effect of tire compaction on soil physical properties and crop root system under no tillage condition[J]. Journal of agricultural machinery, 2017, 48 (6): 168-175.)[23]Lynch J P. Root architecture and plant productivity[J].Plant Physiol,1995,109: 7-13.[24]Botta G F, Tolon-Becerra A, Lastra-Bravo X, et al. Tillage and traffic effects (planters and tractors) on soil compaction and soybean (Glycine max L.) yields in Argentinean pampas[J]. Soil and Tillage Research, 2010, 110: 167-174.[25]南志标,赵红洋,聂斌.黄土高原土壤紧实度对蚕豆生长的影响[J].应用生态学报, 2002, 13(8): 935-938. (Nan Z B, Zhao H Y, Nie B. Effect of soil compaction on broad bean growth in the Loess Plateau [J]. Chinese Journal of Applied Ecology, 2002, 13(8): 935-938.)[26]张兴义,孟凯,隋跃宇.黑土区机械对玉米和大豆地压实作用的研究[J].耕作栽培,2001(5): 13-14. (Zhang X Y, Meng K, Sui Y Y. Study on the compaction effect of machinery on corn and soybean fields in black soil area[J]. Tillage and Cultivation, 2001(5): 13-14.)[27]Calonego J C, Raphael J P A, Rigon J P G, et al. Soil compaction management and soybean yields with cover crops under no-till and occasional chiseling[J]. European Journal of Agronomy, 2017, 85: 31-37.[28]Sivarajan S, Maharlooei M, Bajwa S G, et al. Impact of soil compaction due to wheel traffic on corn and soybean growth, development and yield[J]. Soil and Tillage Research, 2018, 175: 234-243.[29]王彩洁, 李伟, 徐冉, 等.黄淮海地区主栽大豆品种抗旱性比较[J]. 山东农业科学, 2018, 50(1): 67-70. (Wang C J, Li W, Xu R, et al. Comparison of drought resistance of main soybean varieties in Huang Huai Hai area[J]. Shandong Agricultural Science, 2018,50(1): 67-70.)[30]Fernández F G, Brouder S M , Volenec J J, et al. Soybean shoot and root response to localized water and potassium in a split-pot study[J]. Plant and Soil, 2011, 344(1-2): 197-212.[31]孟凡钢, 李羽, 张伟, 等. 不同生育时期干旱胁迫对大豆根系分布和农艺性状的影响[J]. 大豆科学, 2016, 35(6): 943-946. (Meng F G, Li Y, Zhang W, et al. Effects of drought stress on root distribution and agronomic characters of soybean in different growth periods[J]. Soybean Science, 2016, 35(6): 943-946.)[32]Wibowo F, Armaniar. Physiological performance of the soybean crosses in salinity stress[J]. IOP Conference Series: Earth and Environmental Science, 2018, 122(1): 012029. [33]Botta G F, Tolon-Becerra A, Lastra-Bravo X, et al. Tillage and traffic effects(planters and tractors) on soil compaction and soybean (Glycine max L.) yields in Argentinean pampas[J]. Soil and Tillage Research, 2010, 110(1): 167-174.
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(03):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(03):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(03):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(03):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(03):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(03):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(03):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(03):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(03):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(03):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
备注/Memo