[1]刘晓,王丽,王天舒,等.黄淮海耐压实大豆品种的初步筛选及根系特征分析[J].大豆科学,2020,39(03):329-340.[doi:10.11861/j.issn.1000-9841.2020.03.0329]
 LIU Xiao,WANG Li,WANG Tian-shu,et al.Preliminary Screening and Root Characteristics Analysis of Compaction Resistance Soybean Varieties in Huanghuaihai[J].Soybean Science,2020,39(03):329-340.[doi:10.11861/j.issn.1000-9841.2020.03.0329]
点击复制

黄淮海耐压实大豆品种的初步筛选及根系特征分析

参考文献/References:

[1]刘爱杰. 推进农业机械化发展农业现代化[J]. 北京农业, 2013(24): 185. (Liu A J. Advancing agricultural mechanization and developing agricultural modernization[J]. Beijing Agriculture, 2013(24): 185.)[2]于新诚.农业机械化在农业现代化中的作用[J].时代农机,2016(3):15,17. (Yu X C. The function of agricultural mechanization in the agricultural modernization[J]. Times Agricultural Machinery, 2016 (3): 15,17.)[3]佚名.2015年河南省粮食生产机械化率将达80%[J]. 乡村科技, 2012(10): 5. (Anon.Mechanization rate of grain production of Henan province will reach 80% in 2015[J] .Village Science and Technology, 2012 (10): 5.)[4]农业农村部. 到2020年, 河北省农作物耕种收综合机械化水平将升至83%以上[EB/OL]. [2019-09-19]. http://www.moa.gov.cn/xw/qg/201909/t20190919_6328310.htm. (Ministry of Agriculture and Rural Areas. By 2020, the comprehensive mechanization level of crop cultivation and harvesting in Hebei province will rise to more than 83% [EB/OL]. [2019-09-19]. http://www.moa.gov.cn/xw/qg/ 201909/t20190919_6328310.htm.)[5]杨晓娟,李春俭.机械压实对土壤质量,作物生长,土壤生物及环境的影响[J].中国农业科学, 2008, 41(7): 2008-2015. (Yang X J, Li C J. Effect of mechanical compaction on soil quality, crop growth, soil biology and environment[J]. China Agricultural Science, 2008, 41(7): 2008-2015.)[6]张兴义, 隋跃宇. 土壤压实对农作物影响概述[J]. 农业机械学报, 2005, 36(10):161-164. (Zhang X Y, Sui Y Y. Overview of the Impact of soil compaction on crops[J] .Transactions of the Chinese Society of Agricultural Machinery, 2005, 36(10): 161-164.)[7]Batey T. Soil compaction and soil management a review[J]. Soil Use and Management, 2009, 25: 335-345. [8]张艳丽.分析河南大豆产业发展现状及对策[J].农民致富之友, 2018(12):19. (Zhang Y L. Analysis of the current situation and countermeasures of Henan soybean industry development[J]. Friends of Farmers to Get Rich, 2018(12): 19.)[9]梁苏宁, 沐森林, 金诚谦, 等. 黄淮海地区大豆生产机械化现状与发展趋势[J].农机化研究, 2015, 37(1): 261-264, 268. (Liang S N, Mu S L, Jin C Q, et al. Current situation and development trend of soybean production mechanization in Huanghuaihai area[J]. Agricultural Mechanization Research, 2015, 37(1): 261-264, 268.)[10]冯飞燕, 侯俊杰. 大豆生产全程机械化技术研究[J].农机化研究, 2020, 42(1): 261-264. (Feng F Y, Hou J J. Research on the whole process mechanization technology of soybean production[J]. Agricultural Mechanization Research, 2020, 42(1):261-264.[11]王辽卫. 新年度我国大豆进口或现15年来首降[N]. 粮油市场报,2018-05-12(A3). (Wang L W. China′s soybean import in the new year or the first drop in recent 15 years [N]. Grain and Oil Market Report, 2018-05-12(A3).)[12]钟钰.打好政策组合拳实现大豆产业振兴[N]. 粮油市场报,2019-05-11(B1).(Zhong Y. Make good policy combination to realize the revitalization of soybean industry [N]. Grain and Oil Market Report, 2019-05-11 (B1).)[13]李孟霞,文国松,李永忠.作物对土壤压实胁迫响应研究进展[J].山东农业科学, 2019, 51(1): 154-160, 167. (Li M X, Wen G S, Li Y Z. Research progress of crop response to soil compaction stress[J]. Shandong Agricultural Science, 2019, 51(1): 154-160, 167.)[14]任海红, 马俊奎, 刘学义, 等. 山西省审定大豆品种主要农艺性状、产量及品质的演变分析[J]. 中国油料作物报, 2018, 40(6): 762-768. (Ren H H, Ma J K, Liu X Y, et al. Analysis on the evolution of main agronomic characters, yield and quality of approved soybean varieties in Shanxi province[J]. Chinese Journal of Oil Crops, 2018, 40(6): 762-768.)[15]龚振平, 沈昌蒲, 赵福华. 大豆肥田机制的研究——Ⅱ.常规技术条件下大豆根系动态[J].大豆科学, 2000, 19(4): 351-355. (Gong Z P, Shen C P, Zhao F H. Study on the mechanism of soybean fertilizer field Ⅱ. Soybean root dynamics under conventional technical conditions[J]. Soybean Science, 2000 ,19(4): 351-355.)[16]金剑, 刘晓冰, 王光华. 不同熟期大豆R4-R5期冠层某些生理生态性状与产量的关系[J]. 中国农业科学, 2004, 37(9): 1293-1300. (Jin J, Liu X B, Wang G H. The relationship between some physiological and ecological characters of soybean canopy and yield at different ripening stages[J]. China Agricultural Science, 2004, 37(9): 1293-1300.)[17]裴占江, 李淑芹, 佟玉新, 等. 大豆生育期农艺性状与产量相关性研究[J]. 东北农业大学学报, 2007, 38(3): 299-303. (Pei Z J, Li S Q, Tong Y X, et al. Study on correlation between agronomic characters and yield in soybean growth period[J]. Journal of Northeast Agricultural University, 2007, 38(3): 299-303.)[18]王彩洁, 孙石, 金素娟, 等. 中国大豆主产区不同年代大面积种植品种的遗传多样性分析[J]. 作物学报, 2013, 39(11): 1917-1926. (Wang C J, Sun S, Jin S J, et al. Analysis of genetic diversity of large-area varieties planted in different years in major soybean producing areas of China[J]. Acta Agronomica Sinica, 2013, 39 (11): 1917-1926.)[19]李亮,陈宗金,王瑞东,等.山东东平种植大豆新品种的农艺性状与产量[J].中国农技推广, 2019, 35(6): 30-32. (Li L, Chen Z J, Wang R D, et al. Agronomic characters and yield of new soybean varieties planted in Dongping, Shandong[J]. China Agricultural Technology Promotion, 2019, 35(6): 30-32.)[20]Chantal A, Marie, Larry M, et al. Shovelomics root traits assessed on the EURoot maize panel are highly heritable across environments but show low genotype-by-nitrogen interaction[J]. Euphytica, 2019, 215(10): 173.[21]Arifuzzaman M, Oladzadabbasabadi A, McClean P, et al. Shovelomics for phenotyping root architectural traits of rapeseed/canola(Brassica napus L.) and genome-wide association mapping[J]. Molecular Genetics and Genomics, 2019, 294(4): 3.[22]王宪良,王庆杰,李洪文,等.免耕条件下轮胎压实对土壤物理特性和作物根系的影响[J].农业机械学报,2017,48(6):168-175. (Wang X L, Wang Q J, Li H W, et al. Effect of tire compaction on soil physical properties and crop root system under no tillage condition[J]. Journal of agricultural machinery, 2017, 48 (6): 168-175.)[23]Lynch J P. Root architecture and plant productivity[J].Plant Physiol,1995,109: 7-13.[24]Botta G F, Tolon-Becerra A, Lastra-Bravo X, et al. Tillage and traffic effects (planters and tractors) on soil compaction and soybean (Glycine max L.) yields in Argentinean pampas[J]. Soil and Tillage Research, 2010, 110: 167-174.[25]南志标,赵红洋,聂斌.黄土高原土壤紧实度对蚕豆生长的影响[J].应用生态学报, 2002, 13(8): 935-938. (Nan Z B, Zhao H Y, Nie B. Effect of soil compaction on broad bean growth in the Loess Plateau [J]. Chinese Journal of Applied Ecology, 2002, 13(8): 935-938.)[26]张兴义,孟凯,隋跃宇.黑土区机械对玉米和大豆地压实作用的研究[J].耕作栽培,2001(5): 13-14. (Zhang X Y, Meng K, Sui Y Y. Study on the compaction effect of machinery on corn and soybean fields in black soil area[J]. Tillage and Cultivation, 2001(5): 13-14.)[27]Calonego J C, Raphael J P A, Rigon J P G, et al. Soil compaction management and soybean yields with cover crops under no-till and occasional chiseling[J]. European Journal of Agronomy, 2017, 85: 31-37.[28]Sivarajan S, Maharlooei M, Bajwa S G, et al. Impact of soil compaction due to wheel traffic on corn and soybean growth, development and yield[J]. Soil and Tillage Research, 2018, 175: 234-243.[29]王彩洁, 李伟, 徐冉, 等.黄淮海地区主栽大豆品种抗旱性比较[J]. 山东农业科学, 2018, 50(1): 67-70. (Wang C J, Li W, Xu R, et al. Comparison of drought resistance of main soybean varieties in Huang Huai Hai area[J]. Shandong Agricultural Science, 2018,50(1): 67-70.)[30]Fernández F G, Brouder S M , Volenec J J, et al. Soybean shoot and root response to localized water and potassium in a split-pot study[J]. Plant and Soil, 2011, 344(1-2): 197-212.[31]孟凡钢, 李羽, 张伟, 等. 不同生育时期干旱胁迫对大豆根系分布和农艺性状的影响[J]. 大豆科学, 2016, 35(6): 943-946. (Meng F G, Li Y, Zhang W, et al. Effects of drought stress on root distribution and agronomic characters of soybean in different growth periods[J]. Soybean Science, 2016, 35(6): 943-946.)[32]Wibowo F, Armaniar. Physiological performance of the soybean crosses in salinity stress[J]. IOP Conference Series: Earth and Environmental Science, 2018, 122(1): 012029. [33]Botta G F, Tolon-Becerra A, Lastra-Bravo X, et al. Tillage and traffic effects(planters and tractors) on soil compaction and soybean (Glycine max L.) yields in Argentinean pampas[J]. Soil and Tillage Research, 2010, 110(1): 167-174.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(03):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(03):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(03):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(03):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(03):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(03):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(03):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(03):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(03):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(03):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

收稿日期:2019-11-19
基金项目:公益性行业(农业)科研专项(201503119);现代农业产业技术体系建设专项( CARS-04-PS13);中国农业科学院重大科研专项(CAAS-ZDRW202003);中央级公益性科研院所基本科研业务费专项(1610132019016,1610132019034)。
第一作者简介:刘晓(1992-),男,硕士,主要从事土壤物理与土壤环境研究。E-mail:1061609499@qq.com。
通讯作者:尧水红(1978-),女,博士,副研究员,硕导,主要从事土壤生物物理与微生物生态研究。E-mail: yaoshuihong@caas.cn。

更新日期/Last Update: 2020-07-14