WANG Xin-xin,ZHAO Jing-jing,FENG Nai-jie,et al.Effects of Low Temperature Stress on Physiological Activity and Yield of Different Soybean Canopy Leaves of Flowering Stage[J].Soybean Science,2020,39(02):252-259.[doi:10.11861/j.issn.1000-9841.2020.02.0252]
低温胁迫对大豆花期不同冠层叶片生理活性及产量的影响
- Title:
- Effects of Low Temperature Stress on Physiological Activity and Yield of Different Soybean Canopy Leaves of Flowering Stage
- Keywords:
- Soybean; Low temperature stress; Flowering stage; Different canopy; Leaf; Physiological metabolism; Yield
- 文献标志码:
- A
- 摘要:
- 为研究花期低温胁迫对不同品种大豆不同冠层叶片生理活性和产量的影响,以垦丰16和合丰50为试验材料,于大豆开花期进行低温及恢复处理,采用人工模拟自然环境低温的方式,研究低温对大豆花期不同冠层叶片叶绿素、蔗糖、淀粉、淀粉酶及产量的影响。结果表明:大豆花期遭遇低温胁迫显著降低了单株粒重,随低温胁迫时间的延长,其下降幅度逐渐增加,2年内合丰50各处理从上到下各冠层粒重减少幅度依次为17.96%~32.89%、3.46%~10.79%和23.24%~45.35%,垦丰16各处理从上到下各冠层粒重减少幅度依次为1.63%~38.83%、7.67%~30.45%和2.91%~21.22%。两品种的单株荚数和单株粒数也有不同程度的减少。随低温处理时间的延长,不同冠层叶片叶绿素、淀粉和蔗糖含量逐渐降低,叶片淀粉酶活性逐渐增加,自然环境下恢复过程中上述指标呈相反的变化趋势。大豆花期遭遇低温胁迫致使叶片叶绿素含量降低,不利于叶片进行光合作用,叶片内淀粉和蔗糖含量急剧减少且不能在4 d内恢复,不利于大豆产量的形成,推断这是低温胁迫造成大豆减产的重要原因。
- Abstract:
- In order to study the effects of low temperature stress on physiological activity and yield of different soybean canopy leaves at flowering stage, Kenfeng 16 and Hefeng 50 were used as materials to study the effects of low temperature on chlorophyll content, sucrose, starch, amylase and yield of soybean canopy leaves at flowering stage by artificial simulation of low temperature in natural environment. The results showed that the seed weight per plant decreased significantly under low temperature stress at flowering stage. With the prolongation of low temperature stress time, the decreasing extent of seed weight per plant increased gradually. In two years, the seed weight of each canopy of Hefeng 50 treatment decreased by 17.96%-32.89%, 3.46%-10.79% and 23.24%-45.35% respectively from top to bottom. Kenfeng 16 treatment decreased by 1.63%-38.83%, 7.67%-30.45% and 2.91%-21.22% respectively. In addition, the pod number and seed number per plant of the two varieties also decreased in varying degrees. With the prolongation of low temperature treatment time, chlorophyll, starch and sucrose contents in leaves of different canopy layers decreased gradually, and amylase activity in leaves gradually increased. The above indexes showed the opposite trend during the recovery process under natural environment. The chlorophyll content of soybean leaves decreased due to low temperature stress at flowering stage, which was not conducive to photosynthesis of soybean leaves. The starch and sucrose content in soybean leaves decreased sharply and could not be restored within 4 d, which was not conducive to the formation of soybean yield, and it is inferred to be is an important reason for soybean yield reduction under low temperature stress.
参考文献/References:
[1]Ohnishi S, Miyoshi T,Shirai S. Low temperature stress at different flower developmental stages affects pollen development, pollination, and pod set in soybean[J]. Environmental and Experimental Botany, 2010, 69(1): 56-62.[2]王萍, 陶丹, 宋海星, 等. 大豆品种对花期低温反应的研究[J]. 作物杂志, 2000(2): 5-6. (Wang P, Tao D, Song H X, et al. Study on response of soybean varieties to low temperature at flowering stage[J]. Crop Magazine, 2000(2): 5-6.)[3]王萍, 宋海星, 马淑英, 等. 花期低温对大豆荚和籽粒形成的影响[J]. 中国油料作物学报, 2000(2): 34-36. (Wang P, Song H X, Ma S Y, et al. Effects of low temperature at blooming on podding and seedfilling in soybean varieties[J]. Chinese Journal of Oil Crop Sciences, 2000(2): 34-36.)[4]Zeng Y, Yu J, Cang J, et al. Detection of sugar accumulation and expression levels of correlative key enzymes in winter wheat (Triticum aestivum) at low temperatures[J]. Bioscience Biotechnology and Biochemistry, 2011, 75(4): 681-687.[5]Qi H,Hua L, Zhao L, et al. Carbohydrate metabolism in tomato(Lycopersicon esculentum Mill.) seedlings and yield and fruit quality as affected by low night temperature and subsequent recovery[J]. African Journal of Biotechnology, 2013, 10(30): 5743-5749.[6]Liu Y F, Qi M F, Li T L.Photosynthesis, photoinhibition, and antioxidant system in tomato leaves stressed by low night temperature and their subsequent recovery[J]. Plant Science, 2012, 196(11): 8-17.[7]Board J E. Soybean cultivar differences on light interception and leaves area index during seedfilling[J]. Agronomy Journal, 2004, 96(1): 305-310.[8]Minubo K. Effect of growing soybean plants under continuous light on leaves photosynthetic rate and other characteristics concerning biomass production[J]. Journal of Agronomy, 2008, 7(2):156-162.[9]宫香伟, 刘春娟, 冯乃杰, 等. S3307和DTA-6对大豆不同冠层叶片光合特性及产量的影响[J]. 植物生理学报, 2017, 53(10): 1867-1876. (Gong X W, Liu C J, Feng N J, et al. Effects of plant growth regulators S3307 and DTA-6 on photosynthetic characteristics and yield in soybean canopy[J]. Plant Physiology Journal, 2017, 53(10): 1867-1876.)[10]Liu F, Jensen C R, Andersen M N. Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development: Its implication in altering pod set[J]. Field Crops Research, 2004, 86(1): 1-13.[11]Bertamini M, Muthuchelian K, Rubinigg M, et al. Low-night temperature increased the photoinhibition of photosynthesis in grapevine (Vitis vinifera L. cv. Riesling) leaves[J]. Environmental and Experimental Botany, 2006, 57(1-2): 25-31.[12]Miao M,Xu X, Chen X, et al. Cucumber carbohydrate metabolism and translocation under chilling night temperature[J]. Journal of Plant Physiology, 2007, 164(5): 621-628.[13]金剑, 刘晓冰, 王光华. 不同熟期大豆R4-R5期冠层某些生理生态性状与产量的关系[J]. 中国农业科学, 2004, 37(9): 1293-1300. (Jin J, Liu X B, Wang G H. Some eco-physiological characteristics at Rt-Rs stage in relation to soybean yield differing in maturities[J]. Scientia Agricultura Sinica, 2004, 37(9): 1293-1300.)[14]Adam N M, Mcdonald M B, Henderlong P R. The influence of seed position, planting and harvesting dates on soybean seed quality[J]. Seed Science and Technology, 1989, 17(1): 143-152. [15]冯引弟, 张科, 徐克章, 等. 不同结荚习性大豆节位间产量和品质的相关性研究[J].大豆科学, 2016, 35(6): 932-936. (Feng Y D, Zhang K, Xu K Z, et al. Correlations of yield and quality at each node in soybean with different growth habits[J]. Soybean Science, 2016, 35(6): 932-936.)[16]张富厚, 董普辉, 韩赞平, 等. 大豆荚粒空间分布特性及其与产量的相关性[J]. 贵州农业科学, 2017, 45(11): 23-26. (Zhang F H, Dong P H, Han Z P, et al. Spatial distribution characteristics of pod-seed and correlations between yield and pod-seed distribution in soybean[J]. Guizhou Agricultural Sciences, 2017, 45(11): 23-26.)[17]Hampton J G,Kahre L, Gastel A J G V, et al. Quality seed-from production to evaluation[J]. Seed Science and Technology, 1996, 24(2): 393-407.[18]吴奇峰, 相吉山, 董志新. 大豆植株不同冠层籽粒干物质积累动态及产量分布[J]. 大豆科学, 2011, 30(4): 596-601. (Wu Q F, Xiang J S, Dong Z X. Seed dry matter dynamic accumulation and yield distribution in different canopy of soybean[J]. Soybean Science, 2011, 30(4): 596-601.)[19]唐江华, 苏丽丽, 张永强, 等. 不同耕作方式对北疆夏大豆荚粒空间分布及产量的影响[J]. 干旱地区农业研究, 2015, 33(6): 113-116, 166. (Tang J H, Su L L, Zhang Y Q, et al. Effects of tillage patterns on spatial distribution of seeds and yield of summer soybean in north Xinjiang[J]. Agricultural Research in the Arid Areas, 2015, 33(6): 113-116,166.)[20]Xue A O, Zhao M H, Qian Z, et al. Study on plant morphological traits and production characteristics of super high-yielding soybean[J]. Journal of Integrative Agriculture, 2013, 12(7):1173-1182.[21]Hu L P,Meng F Z, Wang S H, et al. Changes in carbohydrate levels and their metabolic enzymes in leaves, phloem sap and mesocarp during cucumber (Cucumis sativus L.) fruit development[J]. Scientia Horticulturae, 2009, 121(2): 131-137.[22]Williard L M, Slattery M. The colorimetric determination of easily hydrolysable fructose units in dextran preparation[J]. Analytical Chemistry, 1945, 27: 33-36.[23]Suksoon L, Jaehyeun K. Total sugars, α-amylase activity, and germination after priming of normal and aged rice seeds[J]. The Korean Journal of Crop Science, 2000, 45: 108-111.[24]刘春娟, 冯乃杰, 郑殿峰, 等. S_(3307)和DTA-6对大豆叶片生理活性及产量的影响[J].植物营养与肥料学报, 2016, 22(3): 626-633. (Liu C J, Feng N J, Zheng D F, et al. Effects of plant growth regulators S3307 and DTA-6 on the leaf physiological activity and yield of soybean[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(3): 626-633.)[25]Chopra J,Kaur N, Gupta A K. Ontogenic changes in enzymes of carbon metabolism in relation to carbohydrate status in developing mung bean reproductive structures[J]. Phytochemistry, 2000, 53: 539-548.[26]Yamamoto T,Narikawa T. Survey report on cool weather injury in Hokkaido. Part III. Upland crops[R]. Agriculture, Forestry and Fishes Research Council, Ministry of Agriculture and Forestry, 1966: 161-180. [27]Matsukawa I. Report of cool weather damage in 1993 in Hokkaido[J]. Miscellaneous Publication of Hokkaido Prefect,1994, 23: 36-41.〖LM〗
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(02):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(02):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(02):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(02):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(02):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(02):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(02):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(02):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(02):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(02):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]田 鑫,何小玲,顾卫红,等.5份春大豆苗期耐低温性的鉴定及评价[J].大豆科学,2013,32(06):755.[doi:10.11861/j.issn.1000-9841.2013.06.0755]
[12]张大伟,杜翔宇,刘春燕,等.低温胁迫对大豆萌发期生理指标的影响[J].大豆科学,2010,29(02):228.[doi:10.11861/j.issn.1000-9841.2010.02.0228]
ZHANG Da-wei,DU Xiang-yu,LIU Chun-yan,et al.Effect of Low-temperature Stress on Physiological Indexes of Soybean at Germination Stage[J].Soybean Science,2010,29(02):228.[doi:10.11861/j.issn.1000-9841.2010.02.0228]
[13]郑莉萍,张云峰,蒋洪蔚,等.大豆种质资源芽期耐低温综合评价及筛选[J].大豆科学,2020,39(06):833.[doi:10.11861/j.issn.1000-9841.2020.06.0833]
ZHENG Li-ping,ZHANG Yun-feng,JIANG Hong-wei,et al.Comprehensively Evaluation and Screening on Low Temperature Tolerance of Soybean Germplasm Resources at Bud Stage[J].Soybean Science,2020,39(02):833.[doi:10.11861/j.issn.1000-9841.2020.06.0833]
[14]黄深富,郑殿峰,项洪涛.花期和鼓粒期低温胁迫对大豆叶片生理特性及产量的影响[J].大豆科学,2024,43(01):64.[doi:10.11861/j.issn.10009841.2024.01.0064]
备注/Memo
收稿日期:2019-03-28