DU Qian,CHU Jia-rui,GUO Yong-xia,et al.Changes of Soybean Disease Resistance and the Rhizosphere Micro-environment Induced by Streptomyces gongzhulingensis n.var[J].Soybean Science,2020,39(01):97-107.[doi:10.11861/j.issn.1000-9841.2020.01.0097]
不吸水链霉菌公主岭变种诱导大豆抗病性与根际土壤微环境的变化
- Title:
- Changes of Soybean Disease Resistance and the Rhizosphere Micro-environment Induced by Streptomyces gongzhulingensis n.var
- Keywords:
- S.gongzhulingensis n.var; Soybean(Glycine max); Phytophthora root and stem rot(PRR); Induced resistance; Microbial communities; Soil enzyme activity
- 文献标志码:
- A
- 摘要:
- 不吸水链霉菌公主岭变种(农抗“769”)是一株来源于土壤中对多种植物病原真菌具有较强拮抗作用的农用链霉菌,为明确农抗“769”对大豆抗疫霉根腐病的免疫诱抗作用及对大豆生长土壤微环境的影响,对盆栽种植不同大豆品种植株进行下胚轴创伤接种,鉴定大豆幼苗对疫霉根腐病的抗性,接种7 d后测定幼苗叶片PAL、PPO、MDA、SOD、CAT、POD、GLU的活性及Chl的含量。小区试验采取随机区组设计,在大豆播种后以农抗“769”菌液浇灌,采用稀释平板法测定不同生育期土壤中可培养细菌、真菌、放线菌菌群数量,并测定土壤中过氧化氢酶、碱性磷酸酶、脲酶和蔗糖酶等生物酶的活性。试验结果表明:农抗“769”菌液浇灌后不同品种的大豆幼苗在抵御疫霉根腐病侵染时发病率均有不同程度的降低。4个品种在农抗“769”诱导下抗性顺序为:Williams 82 > 沈农9号 > 九农21 > Jack,分别比对照提高74.74%、68.82%、14.32%和8.30%。农抗“769”诱导可增强大豆幼苗的诱导抗性,且在病原菌侵入时具有更强的系统抗性。在病原菌与农抗“769”的双重诱导下,PAL、PPO、SOD、CAT、GLU表达量分别比对照提高95.22%、34.55%、9.46%,73.01%和10.71%,Chl的含量比对照高18.19%;MDA比对照降低了33.47%,POD活性比对照降低0.69%,差异不显著。农抗“769”菌液浇灌对根际土壤微生物群落结构优化及土壤酶活性升高具有促进作用。农抗“769”菌液浇灌后大豆植株根际土壤中可培养细菌、放线菌菌群数量增加,真菌菌群数量降低,根际土壤中蔗糖酶、脲酶和磷酸酶活性与对照相比最高分别提高342.59%、73.98%和150.27%,过氧化氢酶活性变化不显著。农抗“769”诱导可提升大豆对疫霉根腐病的抗性,并对其生长的土壤微环境的改良具有积极的作用。
- Abstract:
- Streptomyces gongzhulingensis n.var strain 769 is a soil bacterium which had strong anti-bacterial activity against many important plant pathogenic fungi. This experiment aimed to explore the resistance against Phytophthora root and stem rot (PRR) and the effects of soil micro-environment during soybean planting induced by S. gongzhulingensis n.var. The soybean seeds were watered with S. gongzhulingensis n.var solutions and the seedings were evaluated by the hypocotyl inoculation method with minor modifications in the pot trials. We identificated the resistance of soybean seedlings to PRR and investigated the change of physiological characteristics such as PAL, PPO, MDA, SOD, CAT, POD, GLU and Chl in leaves 7 d after inoculation. And we studied the effects of S.gongzhulingensis n.var solutions on microbial biomass such as bacteria, fungi, actinomycetes and activities of soil enzymes such as urease, sucrase, phosphatase, catalase in rhizosphere of soybean through planting in the field. The results showed that the mortality rate of infected soybean seedlings of different cultivars was decreased with watered by S.gongzhulingensis n.var solutions in greenhouse situations. Compared to CK, the cultivars of Williams 82, Shennong 9, Jiunong 21 and Jack were increased by 74.74%, 68.82%, 14.32%, 8.30%, respectively. S.gongzhulingensis n.var can increased the induced resistance of soybean seedings against PRR. And the induced resistance turned stronger when the seedings infected by Phytophthora sojae. Compared to the CK,under S. gongzhulingensis n.var solutions and the pathogen provoked together, the activities and contents of PAL, PPO, SOD, CAT, GLU, Chl were increased by 74.74%, 68.82%, 14.32%, 8.30%, respectively. The MDA content decreased 33.47%. PAL, POD activities decreased by 0.69%, the difference between provoked and CK was non-significant. Watering with S.gongzhulingensis n.var could improve the soil microbe community structures. The quantities of bacteria and actinomycetes were increased and fungi number in rhizosphere soil decreased. Watering with S.gongzhulingensis n.var could significantly increase the activities of sucrase, urease and phosphatase in rhizosphere soil by 342.59%, 73.98% and 150.27%, respectively. And the activities of catalase had no significant difference among the treatments in this study. Application of S.gongzhulingensis n.var to soybean has significant potential for improvement of soybean resistance to P. soja and soil micro-ecological environment.
参考文献/References:
[1]刘世名,李魏,戴良英.大豆疫霉根腐病抗性研究进展[J].大豆科学, 2016, 35(2):320-329. (Liu S M, Li W, Dai L Y. Progresses in research on the resistance of soybean to phytophythora root rot caused by phytophthora sojae[J].Soybean Science,2016,35(2):320-329.)[2] 耿莉娜,龙艳玲,徐宸,等.感染赤星病后不同烟草品种叶片防御酶的变化[J].西南大学学报(自然科学版),2018,40(10):19-24. (Geng L N,Long Y L,Xu C, et al.Change in activities of defensive enzymes in the leaves of different tobacco varieties infected by the pathogen of tobacco brown spot[J].Journal of Southwest University(Natural Science Edition),2018,40(10):19-24.)[3] 剧虹伶,张曼,阮云泽,等.不同品种香蕉抗枯萎病效果及抗性生理研究[J].植物保护,2017,43(2):82-87. (Ju H L, Zhang M, Ruan Y Z, et al. The effects and mechanisms of different banana varieties to Fusarium wilt disease[J].Plant Protection,2017,43(2): 82-87.)[4] Burnham K.D. Quantitative trait loci for partial resistance to phytophthora sojae in soybean[J].Crop Science,2003,43: 1610-1617.[5] 王伟威,魏崃,丁俊杰,等.大豆品种(系)对不同疫霉菌生理小种的抗性研究[J].大豆科学, 2014,33(4):559-562. (Wang W W,Wei L, Ding J J, et al.Resistance research of soybean cultivars(Lines) against different phytophtora sojae spices[J]. Soybean Science, 2014,33(4):559-562.)[6] 朱振东,王化波,王晓鸣,等.中国大豆疫霉菌分布及毒力多样性研究[J].中国农业科学,2003,36(7): 793-799.(Zhu Z D,Wang H B,Wang X M,et al.Distribution and virulence diversity of Phytophthora sojae in China[J]. Scientia Agricultura Sinica,2003,36(7):793-799.) [7] 吕雅悠,于迪,丁方丽,等.促植物生长根际细菌A21-4对田间辣椒生长及根际土壤微生态环境的影响[J].中国生物防治学报,2016,32(1): 86-92. (Lyu Y Y, Yu D, Ding F L, et al. Effects of PGPR strain A21-4 on growth and rhizosphere soil charactors of pepper in field[J]. Chinese Journal of Biological Control,2016,32(1):86-92.)[8] 隋丽,徐文静,杜茜,等.放线菌769发酵液对水稻体内主要防御酶活性的影响[J]. 吉林农业大学学报, 2009, 31(4): 382-384, 389. (Sui L, Xu W J, Du Q, et al. Effect of actinomycetes 769 fermentation products on main defense enzyme activity of rice[J]. Journal of Jilin Agricultural University, 2009, 31(4): 382-384, 389.)[9] 张振鲁,隋丽,张佳诗,等.链霉菌769诱导对百日草抗病性的影响[J]. 中国植保导刊, 2013, 33(12): 14-17,13. (Zhang Z L,Sui L,Zhang J S,et al.Inducing effect of Streptomyces gongzhulingensis 769 on systemic resistance of Zinnia elegans[J]. China Plant Protection, 2013, 33(12): 14-17, 13.)[10]安俊霞,张正坤,李晓光,等.公主岭霉素对水稻稻瘟病田间防治效果[J].安徽农业科学,2018,46(34):130-134. (An J X, Zhang Z K, Li X G, et al. The control effect of gongzhulingmycin on rice blast[J]. Anhui Journal of Agricultural Sciences,2018, 46(34):130-134.)[11]杜茜,初佳芮,汪洋洲,等.不吸水链霉菌公主岭新变种对大豆生长和产量的影响[J].安徽农业科学, 2018,46(6): 130-132, 161. (Du Q, Chu J R, Wang Y Z, et al. Effect of Streptomyces ahygrosscopicus gongzhulingensis n.var.on growth and yield of soybean[J]. Journal of Anhui Agricultural Science,2018,46(6):130-132,161.)[12]张红丹,杜茜,张正坤,等.放线菌769抑菌谱及液体培养生长曲线的测定[J]. 中国植保导刊, 2010, 30(7): 5-9. (Zhang H D, Du Q, Zhang Z K, et al. Determination of actinomycin 769 inhibitory spectrum and liquid culture growth curve[J]. China Plant Protection, 2010, 30(7): 5-9.)[13]Fujii Y, Akihiro F, Syuntaro H. Rhizosphere soil method: A new bioassay to evaluateallelopathy in the field[J]. Proceedings and Selected Papers of the Fourth World Congress on Allelopathy, 2004: 490-492.[14]程艳波,马启彬,牟英辉,等.华南大豆种质对疫霉根腐病的抗性分析[J].中国农业科学, 2015, 48(12): 2296-2305. (Cheng Y B, Ma Q B, Mu Y H, et al.Analysis of resistance genes of soybean accessions from south China to phytophthora root rot[J].Scientia Agricultura Sinica, 2015, 48(12): 2296-2305.)[15]Legrand M, Kauffmann S, Geoffroy P, et al. Biological function of pathogenesis-related proteins: Four tobacco pathogenesis-related proteins are chitinases[J]. Proceedings of the National Academy of Sciences of the USA, 1987, 84(19): 6750-6754.[16]麦麦提艾力·热合曼, 海利力·库尔班, 郭立华, 等. 灰霉菌激活蛋白诱导抗病相关的酶活性提高番茄抗病性[J].中国生物防治学报,2014,30(6):780-786. (Mamateli R, Halil K, Guo L H, et al. Botrytis cinerea activator protein induce resistance-related enzyme activities and enhancement of disease resistance in tomato plants[J]. Chinese Journal of Biological Control,2014,30(6):780-786.)[17]高福元,张吉立,刘振平.冬季低温对4种彩叶植物SOD、POD活性影响的研究[J]. 中国农学通报, 2010, 26(5): 169-173. (Gao F Y, Zhang J L, Liu Z P. Studies on effects of four species of color-leafed plants on SOD, POD activity of the cold-resistance in winter[J]. Chinese Agricultural Science Bulletin,2010, 26(5): 169-173.)[18]彭建, 王丹英, 徐春梅, 等. 钼酸铵法测定水稻过氧化氢酶活性[J]. 中国农学通报, 2009, 25(16): 61-64. (Peng J, Wang D Y, Xu C M,et al. Ammonium molybdate method for detecting the activities of rice catalase[J]. Chinese Agricultural Science Bulletin, 2009, 25(16): 61-64.)[19]高俊凤.植物生理学实验指导[M]. 北京: 高等教育出版社, 2006: 120-241. (Gao J F. Guide for experimental principle and technique for plant physiology[M]. Beijing: Higher Education Press, 2006: 120-241.) [20]李得孝, 侯万伟, 员海燕.玉米叶片叶绿素快速浸提方法研究[J]. 西北农林科技大学学报(自然科学版), 2006, 34(11): 65-67. (Li D X, Hou W W, Yun H Y. Fast-soakingmethods of chlorophyll from maize leaf[J]. Journal of Northwest Science and Technology University of Agricucal and Forestry (Natural Science Edition ), 2006, 34(11): 65-67.)[21]曹建康,姜微波,赵玉梅.果蔬采后生理生化实验指导[M]. 北京: 中国轻工业出版社,2001. (Cao J K, Jian W B, Zhao Y M. Postharvest physiological and biochemical experimental guidance for fruits and vegetables[M]. Beijing: China Light Industry Press,2001.)[22]贾志红, 孙敏,杨珍平,等.施肥对作物根际微生物的影响[J].作物学报,2004(5): 491-495. (Jia Z H,Sun M,Yang Z P,et al. Influence of different fertilizers to crop rhizosphere microorganisms[J]. Acta Agronomica Sinica, 2004(5): 491-495.)[23]关松荫.土壤酶及其研究法.北京:中国农业出版社,1986:271-319. (Guan S Y. Soil enzymes and their research methods[M]. Beijing: China Agricultural Publishing House, 1986:271-319.)[24]于会泳,宋晓丽,王树声, 等. 低分子量有机酸对植烟土壤酶活性和细菌群落结构的影响[J].中国农业科学, 2015, 48(24): 4936-4947. (Yu H Y, Song X L, Wang S S, et al. Effects of low molecular weight organic acids on soil enzymes activities and bacterial community structure[J]. Scientia Agricultura Sinica,2015,48(24): 4936-4947.)[25]马春红,范尉尉,董文琦, 等.黄萎病菌毒素粗提液对棉花抗性酶的诱导[J].中国农业科学, 2008, 41(12): 4314-4320. (Ma C H, Fan W W, Dong W Q, et al. Infection of the verticillium dahliae toxin filtrate inducing anti-enzyme in cotton (Gossypium hirsutum L.)[J]. Scientia Agricultura Sinica, 2008, 41(12): 4314-4320.)[26]申宏波,胡志凤,丁俊杰,等. Harpins诱导苯丙氨酸解氨酶(PAL)活性防治大豆疫霉根腐病研究[J]. 大豆科学, 2011, 30(3): 526-528. (Shen H B, Hu Z F, Ding J J, et al. Harpins protein alleviate phytophthora megasperma by adjusting PAL enzyme activity in soybean[J]. Soybean Science, 2011,30(3): 526-528.)[27]徐鹏飞, 常敬礼, 赵福华, 等. 野生大豆接种大豆疫霉根腐病菌后多酚氧化酶(PPO)活性变化[J]. 大豆科学, 2012, 31(1): 99-102. (Xu P F, Chang J L, Zhao F H, et al. Response of polyphenol oxidase activity in Glycine soja inoculated with phytophthora sojae[J]. Soybean Science, 2012, 31(1): 99-102.)[28]Hao Z N, Wang L P, He Y P, et al. Expression of defense genes and activities of antioxidant enzyme in rice resistance to rice stripe virus and small brown planthopper[J]. Plant Physiology and Biochemistry, 2011, 49(7): 744-751. [29]黄玉茜,韩晓日,杨劲峰,等.连作胁迫对花生叶片防御酶活性及丙二醛含量的影响[J].吉林农业大学学报, 2013, 35(6): 638-645. (Huang Y Q, Han X R, Yang J F, et al. Influence of continuous cropping stress on defense enzyme activity and MDA 〖JP3〗content of peanut leaves[J]. Journal of Jilin Agricultural University,2013, 35(6): 638-645.)[30]刘爱新,董汉松,梁元存,等. 烟草几丁酶β-1.3-葡聚糖酶的抑菌作用[J].微生物学通报, 1999(1): 15-17. (Liu A X, Dong H S, Liang Y C, et al. Inhibition of tobacco chitinase and β-1.3-glucanase to some pathogenic fungi[J]. Microbiology China, 1999(1): 15-17.)[31]左应梅,杨维泽,杨天梅,等.干旱胁迫下4种人参属植物抗性生理指标的比较[J]. 作物杂志, 2016(3):84-88.(Zuo Y M,Yang W Z,Yang T M, et al. Comparison of resistant physiological index among four species in the genus panax under water stress[J]. Crops, 2016(3):84-88.) [32]梁艳琼,唐文,吴伟怀,等.生防菌TB2对甘蔗叶片抗病相关酶活的诱导作用[J]. 福建农业学报, 2016, 31(6): 620-625.(Liang Y Q,Tang W,Wu W H, et al. Induction of diseaseresisting enzymesin sugarcane by biocontrol bacterium, TB2[J]. Fujian Journal of Agricultural Sciences, 2016, 31(6): 620-625.)[33]宋培玲,张键,郝丽芬,等.不同抗性油菜品种接种黑胫病菌防御酶活性变化研究[J]. 华北农学报, 2015, 30(2): 110-115. (Song P L, Zhang J, Hao L F,et al.Changes in activities of defense enzymes in different rapeseed cultivars infected by Leptosphaeria biglobosa[J]. Acta Abriculturae Boreali-simica, 2015, 30(2): 110-115.)[34]Levine A,Terhaken R,Dixon R,et al. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response[J]. Cell,1994,79:583-593.[35]焦娟,王秀峰,杨凤娟,等.外源一氧化氮对硝酸盐胁迫下黄瓜幼苗生长及抗氧化酶活性的影响[J]. 应用生态学报, 2009,20(12): 3009-3014. (Jiao J, Wang X F, Yang F J, et al. Effects of exogenous NO on the growth and antioxidant enzyme activities of cucumber seedings under NO-3 stress[J]. Chinese Journal of Applied Ecology, 2009, 20(12): 3009-3014.)[36]Baker C J, Orlandi E W. Active oxygen in plant pathogenesis[J]. Annual Review of Phytopathology, 1995, 33: 299-321.[37]Peng M, Kuc J. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitroand on tobacco leaf disks[J]. Phytopathology,1992, 82: 696-699.[38]徐志荣,傅雁辉,赵英杰,等.链霉菌JD211 发酵液对水稻防御稻瘟病菌诱导抗性的作用[J]. 浙江农业学报, 2017, 29(6): 971-976. (Xu Z R, Fu Y H, Zhao Y J, et al. Effect of Streptomyces JD211 fermentation products on the induced resistance to Magnaporthe grisea in rice[J]. Acta Agriculturae Zhejiangensis, 2017,29(6): 971-976.)[39]鲁艳,雷加强,曾凡江,等. NaCl胁迫对大果白刺幼苗生长和抗逆生理特性的影响[J]. 应用生态学报, 2014, 25(3): 711-717. (Lu Y, Lei J Q, Zeng F J, et al. Effects of salt stress on Nitraria roborowskii growth and physiological characteristics of stress resistance[J]. Chinese Journal of Applied Ecology, 2014, 25(3): 711-717.)[40]张亚楠,王兴祥,李孝刚,等.连作对棉花抗枯萎病生理生化特性的影响[J]. 生态学报, 2016, 36(14): 4456-4464. (Zhang Y N, Wang X X, Li X G, et al. Effects of continuous cropping on physiological and biochemical resistance of cotton to Fusarium wilt[J]. Acta Ecologica Sinica, 2016, 36(14): 4456-4464.)[41]樊堂群, 迟玉成, 谢宏峰,等.不同抗性花生感染网斑病菌的酶活性及丙二醛含量变化[J]. 花生学报, 2009, 38(4): 31-34. (Fan T Q, Chi Y C, Xie H F, et al. Changes of MDA content and activities of some enzymes in peanut varieties with different resistance infected with P. arachidicola Marass[J]. Journal of Peanut Science , 2009, 38(4): 31-34.)[42]韩庆典,胡晓君,黄坤艳,等.小麦白粉病菌对小麦幼苗MDA含量及防御酶活性的影响[J]. 分子植物育种, 2016, 14(10): 2803-2811. (Han Q D, Hu X J, Huang K Y, et al. Effects in activities of defense enzymes and contents of MDA in wheat leaf infected by powdery mildew[J]. Molecular Plant Breeding, 2016, 14(10): 2803-2811.)[43]连玲丽,谢荔岩,陈锦明,等.生防菌EN5的定殖能力及其对根际土壤微生物类群的影响[J].植物保护,2011,37(2):31-35. (Lian L L,Xie L Y,Chen J M,et al. Colonization of biocontrol strain EN5 and its effects on rhizosphere soil microbial communities[J].Plant Protection,2011,37(2):31-35.)[44]李兴发,黄娟,杨雅婷,等.光合细菌菌剂对黄冠梨土壤微生物区系及果实品质的影响[J].西南师范大学学报(自然科学版),2015,40(6):55-61.(Li X F,Huang J,Yang Y T,et al. Effects of inoculant of photosynthetic bacterica on soil microbial community and fruit quality of huang guan pear[J]. Journal of Southwest China Normal University (Natural Science Edition),2015,40(6): 55-61.)[45]刘丹,张丽萍,史延茂,等.生防细菌对植物根围微生态效应的研究进展[J].中国农学通报,2014,30(7): 260-265. (Liu D, Zhang L P, Shi M Y, et al. Advances on micro-ecological effects of antagonistic bacteria on rhizosphere[J]. Chinese Agricultural Science Bulletin, 2014, 30(7): 260-265.)[46]余贤美, 侯长明, 王海荣, 等. 枯草芽孢杆菌Bs-15在枣树体内和土壤中的定殖及其对土壤微生物多样性的影响[J].中国生物防治学报, 2014, 30(4): 497-502. (Yu X M, Hou C M, Wang H R, et al. Colonization of Bacillus subtilis Bs-15 in jujube plant and soil and its influence on the microbial diversity in the soil[J]. Chinese Journal of Biological Control,2014,30(4):497-502.)[47]赵兰凤,张丽娟,胡伟,等.RFLP法研究生物复混肥及香蕉枯萎病对土壤细菌群落多样性的影响[J].中国生物防治学报,2013,29(3): 406-416. (Zhao L F, Zhang L J, Hu W, et al. Effects of bio-compound fertilizer on banana wilt and soil bacterial community based on analysis with RFLP[J]. Chinese Journal of Biological Control, 2013, 29(3): 406-416.)[48]葛红莲,张福丽,刘志华. 复合菌剂PB12防治黄瓜疫病效果评价以及对土壤酶活性的影响[J]. 中国生物防治学报 2015,31(2):229-235. (Ge H L, Zhang F L, Liu Z H. Effects of compound biocontrol agent PB12 against Phytophthora blight of cucumber and on soil enzyme activities in rhizosphere[J]. Chinese Journal of Biological Control, 2015, 31(2): 229-235.)
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
备注/Memo
收稿日期:2019-06-21