LI Zhao-jun,TIAN Ru-mei,GONG Yong-chao,et al.Identification of Salt Tolerance of Soybean in Germination Stage Based on Phenotype and Antioxidant Enzyme Activity[J].Soybean Science,2020,39(01):76-83.[doi:10.11861/j.issn.1000-9841.2020.01.0076]
基于表型和抗氧化酶活性的大豆萌芽期耐盐性鉴定
- Title:
- Identification of Salt Tolerance of Soybean in Germination Stage Based on Phenotype and Antioxidant Enzyme Activity
- Keywords:
- Soybean; Salt tolerance identification; Phenotype; Antioxidant enzyme activity; Correlation analysis
- 文献标志码:
- A
- 摘要:
- 为促进在大豆种植初期以表型和抗氧化酶活性评价和筛选耐盐大豆资源,缓解山东省土壤盐渍化对大豆生产的影响,以山东省9份主推大豆品种为材料,在其萌芽期进行4个梯度NaCl胁迫处理,测定其表型指标、抗氧化酶活性和耐盐性,并分析各指标与品种耐盐性的相关性,探究综合评价大豆品种耐盐性的表型和抗氧化酶指标。结果表明:NaCl胁迫浓度高于1%可显著降低大豆发芽率、胚根长和须根数;随着盐浓度不断升高,抗氧化酶活性呈下降趋势,且与对照抗氧化酶活性差异显著;品种耐盐性分级与盐胁迫浓度相关,耐盐品种菏豆28、齐黄34在不同NaCl胁迫条件下始终维持较高水平的抗氧化酶活性;SOD活性是大豆萌芽期耐盐性鉴定评价的重要指标,胚根长、须根数及CAT、POD活性是高浓度NaCl胁迫(1% NaCl)下,大豆耐盐性评价的关键指标。本研究为大豆耐盐性的快捷鉴定评价提供选择指标和数据支撑,能够促进耐盐大豆种质创新及优良亲本筛选。
- Abstract:
- In order to evaluation and screening soybean resources of salt-tolerant at early planting stage to alleviate the impact of soil salinization on soybean production in Shandong province, this study selected 9 main soybean varieties in Shandong province as materials, and carried out four gradient NaCl stress treatments in the germination stage. We measured the phenotypic indexes, antioxidant enzyme activities and salt tolerance of soybean at different NaCl stress, and then investigated the correlation of these indexes with salt tolerance of the varieties. The results showed that the germination rate, radicle length and number of fibrous roots of soybean were significantly reduced when the treatment of NaCl stress concentration was higher than 1%. As the salt concentration increased, the activity of antioxidant enzymes showed a downward trend and was significantly different from the antioxidant enzyme activity of the control group. Salt tolerance grading of varieties was relative with salt stress concentration, the antioxidant enzyme activity of salt-tolerant varieties Hedou 28 and Qihuang 34 maintained high level under different NaCl stress conditions. SOD activity was an important indicator for the evaluation of soybean salt tolerance at germination stage. The radicle length, number of fibrous roots and CAT, POD activity were the key indicators for the evaluation of salt tolerance at high concentration NaCl stress (1% NaCl). This study provides selecting index and data support for the evaluation of salt tolerance of soybean in the most economical and effective way, and can promote the screening of excellent parent material for the innovation of salt-tolerant soybean germplasm.
参考文献/References:
[1]Zhang J P, Song Q J, Cregan P B, et al. Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm[J]. BMC Genomics, 2015, 16(1): 217.[2] Alerding A B, Irvine M C, Cunicelli M J, et al. Image analysis and histochemistry to identify mobile stem resources for seed production in soybean[J]. Journal of Crop Improvement, 2018,32(5): 738-756.[3] Chen H T, Ye H, Do T H, et al. Advances in genetics and breeding of salt tolerance in soybean[J]. Salinity Responses and Tolerance in Plants, 2018, 2: 217-237.[4] Jia T J, An J, Liu Z, et al. Salt stress induced soybean GmIFS1 expression and isoflavone accumulation and salt tolerance in transgenic soybean cotyledon hairy roots and tobacco[J]. Plant Cell Tissue and Organ Culture, 2017, 128(2): 469-477.[5] Do T H, Vuong T D, Dunn D, et al. Mapping and confirmation of loci for salt tolerance in a novel soybean germplasm, Fiskeby III[J]. Theoretical and Applied Genetics, 2018, 131(3): 513-524.[6] Lee G J, Boerma H R, Villagarcia M R, et al. A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars[J]. Theoretical & Applied Genetics, 2004, 109(8): 1610-1619.[7] 徐长兵, 牛风娟, 孙现军, 等. 盐胁迫下大豆转录因子GmTFIIIC功能研究[J].植物遗传资源学报, 2019, 20: 1-10. (Xu C B, Niu F J, Sun X J, et al. Functional characterization of GmTFIIIC in response to salt stress[J]. Journal of Plant Genetic Resources, 2019, 20: 1-10.)[8] 牛远, 杨修艳, 戴存凤, 等. 大豆芽期和苗期耐盐性评价指标筛选[J]. 大豆科学, 2018, 37(2): 215-223. (Niu Y, Yang X Y, Dai C F, et al. Related indices selection of soybean salt tolerance at germination and seedling stages[J]. Soybean Science, 2018, 37(2): 215-223.)[9] 姜奇彦, 胡正, 张辉, 等. 大豆种质资源耐盐性鉴定与研究[J]. 植物遗传资源学报,2012,13(5): 726-732. (Jiang Q Y, Hu Z, Zhang H, et al. Evaluation for salt tolerance in soybean cultivars (Glycine max L.Merrill)[J]. Journal of Plant Genetic Resources, 2012,13(5): 726-732.)[10]曹帅, 杜仲阳, 向殿军, 等. 18份大豆品种耐盐碱性筛选与综合鉴定[J].大豆科学,2019,38(3): 344-352. (Cao S, Du Z Y, Xiang D J, et al. Salt and alkaline tolerance screening and comprehensive identification of eighteen soybean varieties[J]. Soybean Science, 2019, 38(3): 344-352.)[11]Jorge T F, Tohge T, Wendenburg R, et al. Salt-stress secondary metabolite signatures involved in the ability of Casuarina glauca to mitigate oxidative stress[J]. Environmental and Experimental Botany, 2019, 166: 87-95.[12]Kapoor D, Singh S, Kumar V, et al. Antioxidant enzymes regulation in plants in reference to reactive oxygen species(ROS) and reactive nitrogen species (RNS)[J]. Plant Gene, 2019, 19: 101-112.[13]杨晓英, 章文华, 王庆亚, 等. 江苏野生大豆的耐盐性和离子在体内的分布及选择性运输[J]. 应用生态学报, 2003, 14(12): 2237-2240. (Yang X Y, Zhang W H, Wang Q Y, et al. Salt tolerance of wild soybeans in Jiangsu and its relation with ionic distribution and selective transportation[J]. Chinese Journal of Applied Ecology, 2003,14(12): 2237-2240.)[14]高伟, 陆静梅, 牛陆, 等. NaCl胁迫下不同抗性野生大豆体内Na+, K+, Cl-浓度比较分析[J]. 东北师大学报(自然科学版), 2015, 47(1): 124-128. (Gao W, Lu J M, Niu L, et al. Comparative analysis of Na+ , K+ and Cl- concentrations in different resistant wild soybeans under nacl stress[J]. Journal of Northeast Normal University(Natural Science Edition), 2015, 47(1): 124-128.)[15]盖玉红, 牛陆, 董宝池, 等. 不同浓度盐、碱胁迫对野生大豆光合特性和生理生化特性的影响[J]. 江苏农业科学, 2014, 42(5): 89-93. (Gai Y H, Niu L, Dong B C, et al. Effects of salt and alkali stress on photosynthetic characteristics and biochemical characteristics of wild soybean[J]. Jiangsu Agricultural Science, 2014, 42(5): 89-93.)[16]Tarchoune I, Sgherri C, Izzo R, et al. Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization[J].Plant Physiology And Biochemistry, 2010, 48(1): 772-777.[17]Dionisio-Sese M L, Tobita S. Antioxidant responses of rice seed-lings to salinity stress[J]. Plant Science, 1998, 135(1): 1-9.[18]李超汉, 杨红娟, 高亚达, 等. 菜用大豆耐盐品种资源鉴定及其耐盐生理机理研究[J].上海农业学报, 2018,34(3):21-27. (Li C H, Yang H J, Gao Y D, et al. Assessment and screening of salt-tolerance cultivars of vegetable soybean and the salt-tolerance physiological mechanism study[J]. Acta Agriculturae Shanghai,2018,34(3):21-27.)[19]杨艳丽,李大红,李鸿雁.过表达桃PpCuZnSOD基因提高大豆耐盐性研究[J].大豆科学,2018,37(4):525-530. (Yang Y L, Li D H, Li H Y. Overexpression of PpCuZnSOD gene improves salt tolerance in transgenic soybean[J]. Soybean Science, 2018, 37(4): 525-530.)[20]肖朝霞.盐碱胁迫对大豆种子萌发及抗氧化性的影响[J]. 甘肃农业科技, 2011(1): 31-33. (Xiao Z X. Effect of the saline-alkali stress on germination and antioxidant of soybean seed[J]. Gansu Agricultural Science And Technology,2011(1): 31-33.)[21]李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社,2000: 258-261. (Li H S. Principles and techniques of plant physiological and biochemical experiments[M]. Beijing: Higher Education Press, 2000: 258-261.)[22]陈建勋, 王晓峰. 植物生理学实验指导[M]. 广州: 华南科技大学出版社, 2002: 120-121. (Chen J X, Wang X F. Plant physiology experiment guide[M]. Guangzhou: South China University of Science and Technology Press, 2002: 120-121.)[23]林植芳, 李双顺, 林桂珠, 等. 衰老叶片和叶绿体中H2O2的累积与膜脂过氧化的关系[J]. 植物生理学报,1988,14(1):16-22. (Lin Z F, Li S S, Lin G Z, et al. Relationship between accumulation of H2O2 and membrane lipid peroxidation in senescent leaves and chloroplasts[J]. Acta Phytophysiologica Sinica,1988,14(1): 16-22.)[24]张鹏, 徐晨, 徐克章, 等. 大豆品种耐盐性的快速鉴定法及不同时期耐盐性的研究[J].中国油料作物学报,2013,35(5):572-578. (Zhang P, Xu C, Xu K Z, et al. Fast identification method of salt-tolerance and research on salt-tolerance at different stages of soybean cultivars[J]. Chinese Journal of Oil Crop Sciences,2013,35(5): 572 -578.)[25]Mahlooji M, Sharifi R S, Razmjoo J, et al. Effect of salt stress on photosynthesis and physiological parameters of three contrasting barley genotypes[J]. Photosynthetica, 2018,56(2):549-556.[26]Moradi F, Ismail A M. Responses of photosynthesis, chlorophyll fluorescence and Ros-scavenging systems to salt stress during seedling and reproductive stages in rice[J]. Annals of Botany, 2007, 99(6): 1161-1173.[27]Takemura T, Hanagata N, Sugihara K, et al. Physiological and biochemical responses to salt stress in the man-grove, Bruguiera gymnorrhiza[J]. Aquatic Botany, 2000, 68(1): 1-28.[28]刘太林, 杨静慧, 穆俊丽, 等. 不同大豆品种种子萌芽期的耐盐性[J].大豆科学, 2009, 28(5): 837-841. (Liu T L, Yang J H, Mu J L, et al. Salt tolerance selection of ten soybeans in germination period[J]. Soybean Science, 2009, 28(5): 837-841.)[29]阚贵珍, 张威, 李亚凯, 等. 野生大豆芽期耐盐性状的关联分析[J].大豆科学, 2017, 36(5): 737-745. (Kan G Z, Zhang W, Li Y K, et al. Association mapping of wild soybean (Glycine soja) seed germination under salt stress[J]. Soybean Science, 2017,36(5):737-745.)[30]张军起,赵霞,张豪,等.不同大豆种子萌发期耐盐性分析[J].山西农业科学,2019,47(5):770-774, 779. (Zhang J Q, Zhao X, Zhang H, et al. Analysis of salt tolerance of different soybean seeds at germination stage[J]. Journal of Shanxi Agricultural Sciences, 2019,47(5):770-774, 779.)[31]邵桂花, 宋景芝, 刘惠令. 大豆种质资源耐盐性鉴定初报[J]. 中国农业科学, 1986, 19(6): 30-35. (Shao G H, Song J Z, Liu H L. Preliminary studies on the evaluation of salt tolerance in soybean varieties[J]. Scientia Agricultura Sinica, 1986,19(6): 30-35.)[32]喻敏, 陈跃进, 萧洪东, 等.硼钼对低温下草坪草海滨雀稗活性氧代谢的影响[J]. 作物学报, 2005, 31(6): 755-759. (Yu M, Chen Y J, Xiao H D, et al. Influences of boron and molybdenum on active oxygen species in turfgrass seashore paspalum under low temperature[J]. Acta Agronomica Sinica, 2005, 31(6): 755-759.)[33]王丽燕. NaCl处理对野大豆生理生化特性的影响[J].大豆科学, 2008,7(6): 1067-1071. (Wang L Y. Effects of NaCl stress on physiological and biochemical characters of Glycine soja[J].Soybean Science,2008,7(6): 1067-1071.)[34]刘浩然.不同大豆品种对干旱和盐胁迫的生理响应机制[D]. 保定: 河北大学, 2018:20-28. (Liu H R. Physiological response mechanism of different soybean varieties resistant to drought and salt stress[D]. Baoding: Hebei University, 2018: 20-28.)[35]何庆元, 向仕华, 吴萍, 等. 盐胁迫对大豆POD、SOD和CAT同工酶的影响[J]. 安徽科技学院学报, 2015, 29(3): 10-13. (He Q Y, Xiang S H, Wu P, et al. Effects of salt stress in soybean (Glycine max) isoenzyme of POD, SOD and CAT[J]. Journal of Anhui Science and Technology University, 2015, 29(3): 10-13.)
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]罗庆云 於丙军 刘友良.大豆苗期耐盐性鉴定指标的检验[J].大豆科学,2001,20(03):177.[doi:10.11861/j.issn.1000-9841.2001.03.0177]
Luo Qingyun Yu Bingjun Liu Youliang.EFFECTOF NaCl ON THE GROWTH,K+ ,Na+ AND Cl -DISTRIBUTION INSEEDLINGS OF 6 SOYBEAN CULTIVARS(Glycine max L.Merril l)[J].Soybean Science,2001,20(01):177.[doi:10.11861/j.issn.1000-9841.2001.03.0177]
[12]张兆宁,李江辉,赵怡宇,等.不同程度盐胁迫下大豆萌发期耐盐性鉴定[J].大豆科学,2023,42(03):335.[doi:10.11861/j.issn.1000-9841.2023.03.0335]
[13]李阳阳,董岭超,王英男,等.东北地区大豆种质资源萌发期耐盐性鉴定[J].大豆科学,2024,43(04):431.[doi:10.11861/j.issn.10009841.2024.04.0431]
备注/Memo
收稿日期:2019-07-02