YANG Jin,WANG Xiao-men,YE Wen-wu,et al.Identification of Soybean Resistance to Phytophthora sojae in the Germplasm Resources from Huanghuaihai Region of China[J].Soybean Science,2020,39(01):12-22.[doi:DOI:10.11861/j.issn.1000-9841.2020.01.0012]
黄淮海地区大豆种质资源对疫霉根腐病的抗性鉴定
- Title:
- Identification of Soybean Resistance to Phytophthora sojae in the Germplasm Resources from Huanghuaihai Region of China
- Keywords:
- Root rot; Phytophthora sojae; Soybean germplasm resources; Disease resistance identification; Resistance genes; Huanghuaihai region
- 文献标志码:
- A
- 摘要:
- 为系统鉴定黄淮海地区大豆种质资源对大豆疫霉根腐病的抗性,本研究采用改进的黄化苗下胚轴接种方法,利用8个大豆疫霉根腐病菌株对2017和2018年从黄淮海地区各育种单位收集的381个大豆品种(系)进行抗性鉴定。结果显示:22个品种(系)对超强毒力菌株PsJS2表现抗性,超过90%的品种(系)对弱毒力菌株Ps1、Ps3和Ps5均表现抗性。所有大豆品种(系)对8个菌株共产生36种反应型。将待鉴定品种(系)与鉴别寄主对8个大豆疫霉菌株的反应型进行比较,其中有63个品种(系)可能含有抗病基因Rps1b,36个可能含有抗病基因Rps3a,15个可能含有Rps1d;255个品种(系)的32种反应型与任何已知鉴别寄主的反应型均不一致,表明可能含有新的抗病基因或抗病基因的组合。本研究通过室内快速抗性鉴定,发现河南、河北、北京、安徽、山东、山西等地均含有丰富的大豆抗病种质资源,且具有丰富的抗性多样性。其中,河南、山东等地含有丰富的含有抗病基因Rps1b的抗性资源,河北、北京等地含有丰富的含有抗病基因Rps3a的抗病资源,为抗大豆疫霉根腐病的大豆种质利用及抗病基因挖掘提供了重要参考。
- Abstract:
- To identify the resistance level of the soybean cultivars(lines) from Huanghuaihai region to Phytophthora sojae (P. sojae) systematically, we used 381 soybean cultivars (lines) collected in 2017 and 2018 from various soybean breeding institutes, 8 representative P. sojae isolates, and a modified etiolated hypocotyl inoculation method. We found that 22 cultivars (lines) showed resistance to the strong virulent strain PsJS2, and more than 90% cultivars (lines) were resistant to the weak virulent strains Ps1, Ps3 and Ps5. All the cultivars (lines) exhibited 36 resistant/susceptible reaction patterns. The reaction patterns of target cultivars (lines) were compared with the differential lines to the 8 isolates. The reaction pattern occurring in 63 cultivars (lines) was consistent with that in the differential line carrying Rps1b, 36 cultivars (lines) produced reaction pattern coincide with Rps3a and 15 were postulated that contained Rps1d. The other 32 reaction patterns produced by 255 cultivars (lines), not consistent with any known differential line, may contain new Rps gene(s). Therefore, we found abundant resistant cultivars (lines) and diversity in Henan, Hebei, Beijing, Anhui, Shandong and Shanxi used a quickly method in greenhouse. Henan and Shandong possess abundant soybean cultivars (lines) containing Rps1b, Hebei and Beijing possess abundant soybean cultivars (lines) containing Rps3a. The data provided useful information for germplasm sources deployment during soybean breeding.
参考文献/References:
[1]Sugimoto T, Kato M, Yoshida S, et al. Pathogenic diversity of Phytophthora sojae and breeding strategies to develop Phytophthora-resistant soybeans[J]. Breeding Science, 2012, 61(5):511-522.[2] Tyler B M. Phytophthora sojae: Root rot pathogen of soybean and model oomycete[J]. Molecular Plant Pathology, 2007, 8(1):1-8.[3] Doupnik B. Soybean production and disease estimates 1989 to 1991[J]. Plant Disease, 1993, 77(11):1170-1172.[4] 蔡莹莹, 宫千淳, 屈晓泽. 大豆疫霉根腐病的综合防治措施[J]. 生物化工, 2017, 3(3):62-63. (Cai Y Y, Gong Q C, Qu X Z. Comprehensive control measures of Phytophthora root rot of soybean[J]. Biological Chemical Engineering, 2017, 3(3):62-63.)[5] Schmitthenner A F. Problems and progress in control of Phytophthora root rot of soybean[J]. Plant Disease, 1985, 69(4):362-368.[6] Dorrance A E, Jia H, Abney T S. Evaluation of soybean differentials for their interaction with Phytophthora sojae[J/OL]. Plant Health Progress[2004-03-09]. Doi:10.1094/PHP2004-0309-1001-RS.[7] Sandhu D, Schallock K G, Rivera-Velez N, et al. Soybean Phytophthora resistance gene Rps8 maps closely to the Rps3 region[J]. Journal of Heredity, 2005, 96(5):536-541.[8] Wu X L, Zhang B Q, Sun S, et al. Identification, genetic analysis and mapping of resistance to Phytophthora sojae of Pm28 in soybean[J]. Agricultural Sciences in China, 2011, 10(10):1506-1511.[9] Zhang J Q, Xia C J, Duan C X, et al. Identification and candidate gene analysis of a novel Phytophthora resistance gene Rps10 in a Chinese soybean cultivar[J]. PLoS One, 2013, 8(7):e69799.[10]Ping J Q, Fitzgerald J C, Zhang C B, et al. Identification and molecular mapping of Rps11, a novel gene conferring resistance to Phytophthora soja in soybean[J]. Theoretical and Applied Genetics, 2016, 129(2):445-451.[11]Sahoo D K, Abeysekara N S, Cianzio S R, et al. A novel Phytophthora sojae resistance Rps12 gene mapped to a genomic region that contains several Rps genes[J]. PLoS One, 2017, 12(1):e0169950.[12]范爱颖, 王晓鸣, 方小平, 等. 大豆品种豫豆25抗疫霉根腐病基因的鉴定[J]. 作物学报, 2009, 35(10):1844-1850. (Fan A Y, Wang X M, Fang X P. et al. Molecular identification of Phytophthora resistance gene in soybean cultivar Yudou 25[J]. Acta Agronomica Sinica, 2009, 35(10):1844-1850.)[13]Sun S, Wu X L, Zhao J M, et al. Characterization and mapping of RpsYu25, a novel resistance gene to Phytophthora sojae[J]. Plant Breeding, 2011, 130(2):139-143.[14]Zhang J Q, Sun S L, Wang G Q, et al. Characterization of Phytophthora resistance in soybean cultivars/lines bred in Henan province[J]. Euphytica, 2014, 196(3): 375-384.[15]Li L, Lin F, Wang W, et al. Fine mapping and candidate gene analysis of two loci conferring resistance to Phytophthora sojae in soybean[J]. Theoretical and Applied Genetics, 2016, 129(12): 2379-2386.[16]Sun J T, Li L H, Zhao J M, et al. Genetic analysis and fine mapping of RpsJS, a novel resistance gene to Phytophthora sojae in soybean [Glycine max (L.) Merr][J]. Theoretical and Applied Genetics, 2014, 127(4):913-919.[17]于安亮, 徐鹏飞, 王金生, 等. 大豆品种绥农10抗疫霉根腐病遗传分析及抗病基因的SSR标记[J]. 中国油料作物学报, 2010, 32(4):462-466. (Yu A L, Xu P F, Wang J S, et al. Genetic analysis and SSR mapping of gene resistance[J]. Chinese Journal of Oil Crop Sciences, 2010, 32(4):462-466.)[18]Zhu Z D, Huo Y L, Wang X M, et al. Molecular identification of a novel Phytophthora resistance gene in soybean[J]. Acta Agronomica Sinica, 2007, 33(1):154-157.[19]Zhong C, Sun S, Yao L, et al. Fine mapping and identification of a novel Phytophthora root rot resistance locus RpsZS18 on chromosome 2 in soybean[J]. Frontiers in Plant Science, 2018, 9(44): 1-14.[20]Gao H Y, Narayanan N N, Ellison L, et al. Two classes of highly similar coiled coil-nucleotide binding-leucine rich repeat genes isolated from the Rps1-k locus encode Phytophthora resistance in soybean[J]. Molecular Plant-Microbe Interactions, 2005, 18(10):1035-1045.[21]Lohnes D G, Nickell C D, Schmitthenner A F. Origin of soybean alleles for Phytophthora resistance in China[J]. Crop Science, 1996, 36:1689-1692.[22]朱振东, 霍云龙, 王晓鸣, 等. 大豆疫霉根腐病抗源筛选[J]. 植物遗传资源学报, 2006, 7(1):24-30. (Zhu Z D, Huo Y L, Wang X M, et al. Screening for resistance sources to Phytophthora root rot in soybean [J]. Journal of Plant Genetic Resources. 2006, 7(1):24-30.)[23]李晓那, 孙石, 钟超, 等. 黄淮海地区大豆主栽品种对8个大豆疫霉菌株的抗性评价[J]. 作物学报, 2017, 43(12):1774-1783. (Li X N, Sun S, Zhong C, et al. Resistance evaluation to eight Phytophthora sojae isolates for major soybean cultivars in Huang-Huai-Hai rivers valley[J]. Acta Agronomica Sinica, 2017, 43(12): 1774-1783.)[24]Dorrance A E, Kurle J, Robertson A E, et al. Pathotype diversity of Phytophthora sojae in eleven states in the United States[J]. Plant Disease, 2016, 100(7):1429-1437.[25]Dong S, Qutob D, Tedman-Jones J, et al. The Phytophthora sojae avirulence locus Avr3c encodes a multi-copy RXLR effector with sequence polymorphisms among pathogen strains[J]. PLoS One, 2009, 4(5):e5556.[26]Kyle D E, Nickell C D, Nelson R L, et al. Response of soybean accessions from provinces in southern China to Phytophthora sojae[J]. Plant Disease, 1998, 82:555-559.[27]陈晓玲, 朱振东, 王晓鸣, 等. 大豆品种(系)抗疫霉根腐病基因推导[J]. 中国农业科学, 2008, 41(4):1227-1234.(Chen X L, Zhu Z D, Wang X M, et al. Postulation of Phytophthora resistance genes in soybean cultivars or lines[J]. Scientia Agricultura Sinica, 2008, 41(4):1227-1234.)[28]Huang J, Guo N, Li Y H, et al. Phenotypic evaluation and genetic dissection of resistance to Phytophthora sojae in the Chinese soybean mini core collection[J]. BMC Genet, 2016, 17:85.[29]Tang Q, Cui L, Li D, et al. Resistance evaluation of soybean germplasm from Huanghuai region to Phytophthora root rot[J]. Agricultural Sciences in China, 2011, 10(2):246-251.[30]崔林开. 中国大豆疫霉菌毒性组成、遗传结构及其无毒基因多态性的研究[D]. 南京:南京农业大学, 2010:36-43. (Cui L K. Study on virulence composition, genetic structure and polymorphism of Avr genes in Phytophthora sojae in China[D]. Nanjing: Nanjing Agricultural University, 2010: 36-43.[31]唐庆华, 崔林开, 李德龙, 等. 黄淮地区大豆种质资源对疫霉根腐病的抗病性评价[J]. 中国农业科学, 2010, 43(11):2246-2252. (Tang Q H, Cui L K, Li D L, et al. Resistance evaluation of soybean germplasm from Huanghuai Valley to Phytophthora root rot[J]. Scientia Agricultura Sinica, 2010, 43(11):2246-2252.)
相似文献/References:
[1]韩祥东,花美娜,冯永君,等.拮抗大豆疫霉菌植物内生细菌的筛选与鉴定[J].大豆科学,2012,31(01):85.[doi:10.3969/j.issn.1000-9841.2012.01.019]
HAN Xiang-dong,HUA Mei-na,FENG Yong-jun,et al.Isolation and Characterization of Endophytic Bacteria for Phytophthora sojae Inhibition from Soybean Plant[J].Soybean Science,2012,31(01):85.[doi:10.3969/j.issn.1000-9841.2012.01.019]
[2]李春杰,刘海龙,许艳丽.大豆根腐病拮抗细菌的生物学特性研究[J].大豆科学,2011,30(05):809.[doi:10.11861/j.issn.1000-9841.2011.05.0809]
LI Chun-jie,LIU Hai-long,XU Yan-li.Biological Characteristics of Antagonistic Bacteria against Soybean Root Rot[J].Soybean Science,2011,30(01):809.[doi:10.11861/j.issn.1000-9841.2011.05.0809]
[3]周克琴,韩秉进,张秋英,等.生防菌BRF-1和BRF-2对大豆根腐病和产量的影响[J].大豆科学,2012,31(05):801.[doi:10.3969/j.issn.1000-9841.2012.05.024]
ZHOU Ke-qin,HAN Bing-jin,ZHANG Qiu-ying,et al.Effect of BRF-1 and BRF-2 on Root Rot and Seed Yield in Soybean[J].Soybean Science,2012,31(01):801.[doi:10.3969/j.issn.1000-9841.2012.05.024]
[4]黄姗姗,段玉玺,陈立杰,等.诱导大豆抗逆细菌的筛选及分子鉴定[J].大豆科学,2011,30(02):205.[doi:10.11861/j.issn.1000-9841.2011.02.0205]
HUANG Shan-shan,DUAN Yu-xi,CHEN Li-jie,et al.Screening and Molecular Identification of Bacteria Induced Anti-adversity Effect in Soybean[J].Soybean Science,2011,30(01):205.[doi:10.11861/j.issn.1000-9841.2011.02.0205]
[5]任龙翚,张宝强,武晓玲,等.大豆种质对大豆疫霉菌株Pm8的抗性分析[J].大豆科学,2010,29(01):77.[doi:10.11861/j.issn.1000-9841.2010.01.0077]
REN Long-hui,ZHANG Bao-qiang,WU Xiao-ing,et al.Resistance of Soybean Germplasm to Phytophthora sojae Pm8[J].Soybean Science,2010,29(01):77.[doi:10.11861/j.issn.1000-9841.2010.01.0077]
[6]刘铜,侯巨梅,左豫虎.大豆疫霉对甲霜灵敏感性的遗传与变异[J].大豆科学,2009,28(02):349.[doi:10.11861/j.issn.1000-9841.2009.02.0349]
LIU Tong,HOU Ju-mei,ZUO Yu-hu.Inheritance and Variation of Sensitivity to Metalaxyl in Phytophthora Sojae[J].Soybean Science,2009,28(01):349.[doi:10.11861/j.issn.1000-9841.2009.02.0349]
[7]刘金波,许艳丽,李春杰,等.大豆连作土壤盆栽大豆根腐病及生长发育状况[J].大豆科学,2008,27(05):806.[doi:10.11861/j.issn.1000-9841.2008.05.0806]
LIU Jin-bo,XU Yan-li,LI Chun-jie,et al.Effect of Long Term Soybean Monoculture on Soybean Root Rot and Soybean Growth and Development in Pot Experiment[J].Soybean Science,2008,27(01):806.[doi:10.11861/j.issn.1000-9841.2008.05.0806]
[8]许艳丽,张红骥,张匀华,等.施用根腐病生防颗粒剂对大豆田土壤微生物区系的影响[J].大豆科学,2007,26(02):198.[doi:10.3969/j.issn.1000-9841.2007.02.017]
XU Yan-liZHANG Hong-ji,ZHANG Yun-hua,LI Chun-jie.THE EFFECT OF BIOCONTROL AGENTS OF TRICHODERMA AGAINST SOYBEAN ROOT ROT ON SOIL MICROORGANISM[J].Soybean Science,2007,26(01):198.[doi:10.3969/j.issn.1000-9841.2007.02.017]
[9]台莲梅郭永霞林纯刚闫凤云辛惠普.不同农业措施对重茬大豆根腐病及大豆生育的影响[J].大豆科学,2002,21(04):298.[doi:10.11861/j.issn.1000-9841.2002.04.0298]
Tai Lianmei Guo Yongxia Lin Cungang Yan Fengyun Xin Huipu.EFFECT ON AGRONOMIC PRACTICES TO SOYBEAN ROOT ROT AND SOYBEANGROWTH IN CONDITION OF CONTINUOUS CROPPING[J].Soybean Science,2002,21(01):298.[doi:10.11861/j.issn.1000-9841.2002.04.0298]
[10]韩丽梅 鞠会艳 王旭明.大豆连作土壤有机化合物对大豆根腐病菌生长的影响[J].大豆科学,2004,23(01):36.[doi:10.11861/j.issn.1000-9841.2004.01.0036]
Han Limei Qu Huyan Wang Xuming.INFLUENCE OF THEORGANIC COMPOUNDS IN CONTINUOUS CROPPINGSOYBEAN ON PATHOGENIC OF ROOT ROT[J].Soybean Science,2004,23(01):36.[doi:10.11861/j.issn.1000-9841.2004.01.0036]
备注/Memo
收稿日期:2019-06-19