[1]Wu W, Zhang Q, Zhu Y, et al. Comparative metabolic profiling reveals secondary metabolites correlated with soybean salt tolerance[J]. Journal of Agricultural and Food Chemistry, 2008, 56(23): 118-132.
[2]Jahan M A, Harris B, Lowery M, et al. The NAC family transcription factor GmNAC42-1 regulates biosynthesis of the anticancer and neuroprotective glyceollins in soybean[J]. BMC Genomics, 2019, 20: 149.
[3]孙明明, 王萍, 李智媛, 等. 大豆活性成分研究进展[J]. 大豆科学, 2018, 37(6): 975-983. (Sun M M, Wang P, Li Z Y, et al. Research progress of soybean active ingredients[J]. Soybean Science, 2018, 37(6): 975-983.)
[4]Crawford N M. Mechanisms for nitric oxide synthesis in plants[J]. Journal of Experimental Botany, 2006, 57(3): 471-478.
[5]Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′upstream regions of genes coding for sporamin and β-amylase from sweet potato[J]. Molecular Gene Genetic, 1994, 244(6): 563-571.
[6]李珍, 华秀婷, 张积森. 高等植物WRKY转录因子家族的演化及功能研究进展[J]. 热带作物学报, 2018, 39(2): 405-414. (Li Z, Hua X T, Zhang J S. Evolution and gene function of WRKY transcription factor families in higher plants[J]. Chinese Journal of Tropical Crops, 2018, 39(2): 405-414.)
[7]Banerjee A, Roychoudhury A. WRKY proteins: Signaling and regulation of expression during abiotic stress responses[J]. The Scientific World Journal, 2015: 807560.
[8]Duan Y, Jiang Y, Ye S, et al. PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana[J]. Plant Cell Report, 2015, 34: 831-841.
[9]Zentella R, Zhang Z, Park M, et al. Global analysis of della direct targets in early gibberellin signaling in Arabidopsis[J]. Plant Cell, 2007, 19: 3037-3057.
[10]Silke R, Imre E S. Targets of AtWRKY6 regulation during plant senescence and pathogen defense[J]. Genes Development, 2002, 16: 1139-1149.
[11]孙淑豪,余迪求. WRKY转录因子家族调控植物逆境胁迫响应[J]. 生物技术通报, 2016, 32(10): 66-76. (Sun S H, Yu D Q. WRKY transcription factors in regulation of stress response in plant[J]. Biotechnology Bulletin, 2016, 32(10): 66-76.)
[12]Chen H, Lai Z B, Shi J W, et al. Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to absci-sic acid and abiotic stress[J]. BMC Plant Biology, 2010, 10(6): 443-462.
[13]Park C Y, Lee J H, Yoo J H, et al. WRKY group IId transcription factors interact with calmodulin[J]. FEBS Letters, 2005, 579(6):1545-50.
[14]Schmutz J, Cannon S B, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010,463(7278):178-183.
[15]李岢, 周春江. 植物WRKY转录因子的研究进展[J]. 植物生理学报, 2014, 50(9):1329-1335. (Li K, Zhou C J. Research progress in WRKY transcription factors in plants[J]. Plant Physiology Journal, 2014, 50(9): 1329-1335.)
[16]罗昌国, 袁启凤, 裴晓红, 等. 植物WRKY转录因子家族Group Ⅱa基因研究进展[J]. 热带作物学报, 2015, 36(3): 629-637. (Luo C G, Yuan Q F, Pei X H, et al. Research progress on WRKY transcription factors GroupⅡa gene in plants[J]. Chinese Journal of Tropical Crops, 2015, 36(3): 629-637.)
[17]禹阳, 贾赵东, 马佩勇, 等. WRKY转录因子在植物抗病反应中的功能研究进展[J]. 分子植物育种, 2018,16 (21): 7009-7020. (Yu Y, Jia Z D, Ma P Y, et al. Research progress on the role of WRKY transcription factors in plant defense[J]. Molecular Plant Breeding, 2018, 16(21):7009-7020.)
[18]Malato B M, Cabreira C, Strohm B W, et al. Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to Phakopsora pachyrhizi infection[J]. BMC Plant Biology, 2014, 14: 236.
[19]Fan S J, Dong L D, Han D, et al. GmWRKY31 and GmHDL56 enhances resistance to phytophthora sojae by regulating defense-related gene expression in soybean[J]. Frontiers in Plant Science, 2017, 68: 781.
[20]王莎莎, 崔晓霞, 黄颜众, 等. 大豆GmWRKY148的克隆与功能分析[J]. 中国农业科学, 2018, 51(18): 3445-3454. (Wang S S, Cui X X, Huang Y Z, et al. Cloning and functional analysis of the GmWRKY148 in soybean[J]. Scientia Agricultura Sinica, 2018, 51(18): 3445-3454.)
[21]Yang Y, Zhou Y, Chi Y J, et al. Characterization of soybean WRKY gene family and identifcation of soybean WRKY genes that promote resistance to soybean cyst nematode[J]. Scientific Reports, 2017,7:17804.
[22]Tripathi P, Rabara R C, Choudhary M K, et al. The interactome of soybean GmWRKY53 using yeast 2-hybrid library screening to saturation[J]. Plant Signal Behavior, 2015, 10(7):e1028705.
[23]Wei L, Wang W W, Yu Z Y, et al. Molecular genetic analysis on soybean cyst nematode resistance in Heilongjiang province, China[J]. Soybean Science, 2018, 37(6): 843-853.
[24]Aditya B, Aryadeep R. WRKY proteins: Signaling and regulation of expression during abiotic stress responses[J]. The Scientific World Journal, 2015: 807560.
[25]王昭玉, 甄 珍, 李雅琳, 等. 大豆转录因子GmWRKY4分子克隆与表达分析 [J]. 大豆科学, 2018, 37(4): 539-544. (Wang Z Y, Zhen Z, Li Y L, et al. Cloning and expression analysis of transcription factors GmWRKY4 in soybean[J]. Soybean Science, 2018, 37(4): 539-544.)
[26]柯丹霞, 彭昆鹏, 夏远君, 等. 盐胁迫应答基因GmWRKY6的克隆及转基因百脉根的抗盐分析[J]. 草业学报, 2018, 27(8):95-106. (Ke D X, Peng K P, Xia Y J, et al. Cloning of salt-stressed responsive gene GmWRKY6 and salt resistance analysis of transgenic Lotus japonicus[J]. Acta Prataculturae Sinica, 2018, 27(8): 95-106.)
[27]Shi W Y, Du Y T, Ma J, et al. The WRKY transcription factor GmWRKY12 confers drought and salt tolerance in soybean[J]. International Journal of Molecular Sciences, 2018, 19: 4087.
[28]Zhou Q Z, Tian A G, Zou H F, et al. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants[J]. Plant Biotechnology Journal, 2008, 6(5): 486-503.
[29]Yu Y C, Wang N, Hu R B, et al. Genome-wide identification of soybean WRKY transcription factors in response to salt stress[J]. Springer Plus, 2016, 5: 920.
[30]宁文峰, 庞 添, 杨艳玲, 等. 大豆GmWRKY20基因表达特性研究[J]. 大豆科学, 2016, 35(5): 748-753. (Ning W F, Pang T, Yang Y Y, et al. Expression analysis of GmWRKY20 in soybean[J]. Soybean Science, 2016, 35(5): 748-753.)
[31]王婷婷, 丛亚辉, 柳聚阁, 等. 大豆中一个WRKY28-like基因的克隆与功能分析[J]. 作物学报, 2016, 42(4): 469-481. (Wang T T, Cong Y H, Liu J G, et al. Cloning and functional analysis of a WRKY28-like gene in soybean[J]. Acta Agronomica Sinica, 2016, 42(4): 469-481.)
[32]Xu Z L, Raza Q, Xu L, et al. GmWRKY49, a salt-responsive nuclear protein, improved root length and governed better salinity tolerance in transgenic Arabidopsis[J]. Frontiers in Plant Science, 2018, 9: 809.
[33]Song H, Wang P F, Hou Lei, et al. Global analysis of WRKY genes and their response to dehydration and salt stress in soybean[J]. Frontiers in Plant Science, 2016, 7: 9.
[34]Wang F, Chen H W, Li Q T, et al. GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants[J]. The Plant Journal, 2015, 83(2): 224-236.
[35]李大红, 王春弘, 刘喜平, 等. 大豆GmWRKY35基因的克隆及其增强烟草耐旱能力研究[J]. 大豆科学, 2017, 36(5): 685-691. (Li D H, Wang C H, Liu X P, et al. Expression of GmWRKY35, a soybean WRKY gene, in transgenic tobacca confers drought stress tolerances[J]. Soybean Science, 2017, 36(5): 685-691.)
[36]张兰, 王晓萍, 毕影东, 等. 大豆转录因子GmWRKY57B的基因克隆及功能分析[J]. 科学通报, 2008, 53(21): 2604-2611. (Zhang L, Wang X P, Bi Y D, et al. Cloning and functional analysis of transcription factors GmWRKY57B in soybean[J]. Chinese Science Bulletin, 2008, 53(21): 2604-2611.)
[37]Zhu Y X, Gong H J. Beneficial effects of silicon on salt and drought tolerance in plants[J]. Agronomy for Sustainable Development, 2014, 34: 455-472.
[38]Yin J L, Jia J H, Lian Z Y, et al. Silicon enhances the salt tolerance of cucumber through increasing polyamine accumulation and decreasing oxidative damage[J]. Ecotoxicology and Environmental Safety, 2019, 169: 8-17.
[39]朱永兴, 李换丽, 胡彦宏, 等. 硅酸盐提高番茄抗盐性的效应与生理机制[J]. 农业环境科学学报, 2015, 34(2):213-220.(Zhu Y X, Li H L, Hu Y H, et al. Effect of silicate on salt resistance in tomato and underlying physiological mechanisms[J]. Journal of Agro-Environment Science, 2015, 34(2):213-220.)
[40]Zhu Y X, Yin J L, Liang Y F, et al. Transcriptomic dynamics provide an insight into the mechanism for silicon-mediated alleviation of salt stress in cucumber plants[J]. Ecotoxicology and Environmental Safety, 2019, 174:245-254.
[41]Li H L, Zhu Y X, Hu Y H, et al. Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture[J]. Acta Physiol Plant, 2015, 37:71.
[42]Zhang Y, Shou L, Ying L, et al. Effects of exogenous spermidine and elevated CO2 on physiological and biochemical changes in tomato plants under iso-osmotic salt stress[J]. Journal of Plant Growth Regulation, 2018, 37:1222-1234.
[43]Zhang Y, Shi Y, Gong H J, et al. Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress[J]. Journal of Integrative Agriculture, 2018, 17(10): 2151-2159.
[44]Gong H J, Zhu X Y, Chen K M, et al. Silicon alleviates oxidative damage of wheat plants in pots under drought[J]. Plant Science, 2005, 169: 313-321.
[45]魏晓爱, 姚文静, 姜廷波等. 拟南芥WRKY基因家族应答非生物胁迫基因的鉴定[J]. 东北林业大学学报, 2016, 44(10): 45-48. (Wei X A, Yao W J, Jiang T B, et al. Identification of WRKY gene in response to abiotic stress from WRKY transcirption factor gene family of Arabidopsis thaliana[J]. Journal of Northeast Forestry University, 2016, 44(10): 45-48.)
[46]Wu J, Chen J B, Wang L F, et al. Genome-wide investigation of WRKY transcription factors involved in terminal drought stress response in common bean[J]. Frontiers in Plant Science, 2017, 8: 380
[47]Lai Z B, Vinod K M, Zheng Z Y, et al. Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens[J]. BMC Plant Biology, 2008, 8: 68.
[48]Luo X, Bai X, Sun X L, et al. Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signalling[J]. Journal of Experimental Botany, 2013, 8 (64): 2155-2169.
[49]Chen W, Yan Q M, Patil G B, et al. Identification and comparative analysis of differential gene expression in soybean leaf tissue under drought and flooding stress renealed by RNA-Seq[J]. Frontiers in Plant Science, 2016, 7: 1044.
[50]包刚, 覃志豪, 周义, 等. 气候变化对中国农业生产影响的模拟评价进展[J]. 中国农学通报, 2012, 28(2): 303-307. (Bao G, Qin Z H, Zhou Y, et al. Advance of evaluation of climate impact on crop yield[J]. Chinese Agriculture Science Bulletin, 2012, 28(2): 303-307. )
[51]靳路真, 王 洋, 张 伟, 等. 高温胁迫对不同耐性大豆品种生理生化的影响[J]. 大豆科学, 2019, 38(1): 63-71. (Jin L Z, Wang Y, Zhang W, et al. Effects of high temperature stress on physiological and biochemical traits of soybeans with different heat tolerance[J]. Soybean Science, 2019, 38(1): 63-71.)
[52]桑树鹏. 大豆不同生育期内应对低温冷害措施的研究[J]. 大豆科技, 2013(1): 53-54. (Sang S P. Study on the measures of coping with low temperature and cold damage in different growth stages of soybean[J]. Soybean Technology, 2013(1):53-54.)
[53]谢政文, 王连军, 陈锦洋, 等. 植物WRKY转录因子及其生物学功能研究进展[J]. 中国农业科技导报, 2016, 18(3): 46-54. (Xie Z W, Wang L J, Chen J Y, et al. Studies on WRKY transcription factors and their biological functions in plants[J]. Journal of Agricultural Science Technology, 2016, 18(3): 46-54.)
[54]李振华, 王建华. 种子活力与萌发的生理与分子机制研究进展[J]. 中国农业科学, 2015, 48(4): 646-660. (Li Z H, Wang J H. Advances in research of physiological and molecular mechanism in seed vigor and germination[J]. Scientia Agricultura Sinica, 2015, 48(4): 646-660.)
[55]Jiang W, Yu D. Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid[J]. BMC Plant Biology, 2009, 9: 96.
[56]Robatzek S, Somssich I E. Targets of AtWRKY6 regulation during plant senescence and pathogen defence[J]. Genes and Development, 2002,16(9): 1139-1149.
[57]Yu Y, Liu Z, Wang L, et al. WRKY71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana[J]. The Plant Journal, 2016, 85(1):96-106.
[58]Zhang C Q, Xu Y, Lu Y, et al. The WRKY transcription factor OsWRKY78 regulates stem elongtion and seed development in rice[J]. Planta, 2011, 234(3): 541-554.
[59]Han M, Kim C Y, Lee J, et al. OsWRKY42 represses OsMTid and induces reactive oxygen species and leaf senescene in rice[J]. Molecules and Cells, 2014, 37(7): 532-539.
[60]Gu Y Z, Li W, Jiang H W, et al. Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size [J]. Journal of Experimental Botany, 2017, 68(11): 2717-2729.
[61]Yang Y, Chi Y J, Wang Z, et al. Functional analysis of structurally related soybean GmWRKY58 and GmWRKY76 in plant growth and development[J]. Journal of Experimental Botany, 2016, 67(15): 4727-4742.
[62]Vanderauwera S, Vandenbroucke K, Inzé A, et al. AtWRKY15 perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2012,109(49): 20113-20118.
[63]Yu F, Huaxia Y, Lu W, et al. GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutum L.), is involved in disease resistance and plant development[J]. BMC Plant Biology, 2012, 12: 144.
[64]Chen L, Song Y, Li S, et al. The role of WRKY transcription factors in plant abiotic stresses[J]. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms, 2012, 1819(2): 120-128.
[65]Jiang Y, Liang G, Yang S, et al. Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid-and auxin-mediated signaling in jasmonic acid-induced leaf senescence[J]. Plant Cell, 2014, 26: 230-245.
[66]Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response[J]. Plant Molecular Biology, 2003, 51: 21-37.
[67]Shang Y, Yan L, Liu Z Q, et al. The Mg-chelatase H subunit of arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition[J]. Plant Cell, 2010, 22:1909-1935.
[68]Zhang Y, Yu H, Yang X, et al. CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenicplant by regulating a set of cold-stress responsive genes in an ABA dependent manner[J]. Plant Physiology Biochemistry, 2016, 108:478-487.
[69]Mahajan S, Tuteja N. Cold, salinity and drought stresses: An overview[J]. Archives of Biochemistry and Biophysics, 2005, 444(2): 139-158.
[70]秦耀旭, 张关元, 刘司奇, 等. 植物重金属胁迫相关miRNA的研究进展[J]. 分子植物育种, 2019, 17(9):2855-2861.(Qin Y X, Zhang G Y, Liu S Q, et al. Research progress of miRNA related to heavy metal stress in plants[J]. Molecular Plant Breeding, 2019, 17(9): 2855-2861.)
[71]彭俊楚. 大豆GmWRKYs基因的克隆和功能研究[D]. 广州: 华南农业大学, 2016: 32-36. (Peng J C. Isolation and function analysis of soybean GmWRKYs[D]. Guangzhou: South China Agricultural University, 2016: 32-36.)
[72]Wang H, Hao J, Chen X, et al. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants[J]. Plant Molecular Biology, 2007, 65(6): 799-815.
[73]张凡, 尹俊龙, 郭瑛琪, 等. WRKY转录因子的研究进展[J]. 生物技术通报, 2018, 34(1): 40-48. (Zhang F, Yin J L, Guo Y Q, et al. Research advances on WRKY transcription factors[J]. Biotechnology Bulletin, 2018, 34(1): 40-48.)
[74]李艳超, 赵青松, 王凤敏, 等. 大豆遗传转化技术研究进展[J]. 大豆科学, 2015, 34(1): 155-162. (Li Y C, Zhao Q S, Wang F M, et al. Research progress on soybean genetic transformation technology[J]. Soybean Science, 2015, 34(1): 155-162.)