LIU Feng-gang,JU Peng-fei,WANG Fu-zheng,et al.Effect of Triadimefon on AsA-GSH Cycle of Soybean Roots Under Drought Stress at Flowering Stage[J].Soybean Science,2019,38(05):740-746.[doi:10.11861/j.issn.1000-9841.2019.05.0740]
三唑酮对大豆花期干旱胁迫下根系AsA-GSH循环的影响
- Title:
- Effect of Triadimefon on AsA-GSH Cycle of Soybean Roots Under Drought Stress at Flowering Stage
- Keywords:
- Triadimefon; Soybean; Drought stress; Roots; Ascorbate-Glutathione Cycle
- 文献标志码:
- A
- 摘要:
- 为研究干旱胁迫下喷施三唑酮对大豆花期根系耐旱性的影响,以大豆品种南农99-6为材料,通过盆栽试验,在初花期喷施三唑酮后,开始干旱胁迫处理,土壤相对含水量逐渐降至45%,干旱持续21 d后复水,研究干旱胁迫下喷施三唑酮对大豆根系膜脂过氧化程度、活性氧和抗坏血酸-谷胱甘肽(AsA-GSH)循环系统的影响。结果表明:相较于第21天的干旱(D)处理,干旱喷施三唑酮(TD)处理使整个花期干旱胁迫下根系中MDA含量降低了18.75%;O-2〖KG-3mm〗?产生速率和H2O2含量分别减少了10.05%和8.55%。TD处理增加了整个花期干旱胁迫下APX和GR活性;干旱胁迫后期增加了MDHAR活性并延缓了GPX和DHAR活性的降低。TD处理的第21天的AsA和GSH含量分别高于D处理17.67%和18.12%。在干旱复水后7 d TD比D处理维持了较高的抗氧化酶活性和抗氧化剂含量。以上结果表明:喷施三唑酮提高了干旱胁迫下大豆根系中抗氧化酶的活性,增强了AsA和GSH的再生能力,增加了抗氧化物质的含量,促进了大豆根系中活性氧的清除,减轻了膜脂过氧化程度。而复水后较高的抗氧化酶活性和抗氧化剂,促进了根系向正常生理状态的恢复。因此TD处理增强了大豆的抗旱性。
- Abstract:
- In order to study the effects of spraying triadimefon on the drought tolerance of soybean roots under drought stress at flowering stage, the soybean variety Nannong 99-6 was used as the test material. After spraying triadimefon at the initial flowering stage, the drought stress treatment was started. The soil relative water content gradually decreased to 45%, and the drought continued for 21 d and then rehydrated. The effects of spraying triadimefon on the membrane lipid peroxidation, reactive oxygen species and ascorbate-glutathione cycle in soybean roots under drought stress were studied. The results showed that TD reduced the MDA content in the roots by 18.75%, the O-2? production rate and H2O2 content decreased by 10.05% and 8.55% respectively, compared with the D treatment on the 21st day. TD treatment increased the activity of APX and GR under drought stress during the whole flowering period, increased the activity of MDHAR and delayed the decrease of GPX and DHAR activity at the late stage of drought stress. The AsA and GSH contents on the 21 d of TD treatment were 17.76% and 18.12% higher than those of D treatment, respectively. Compared with D treatment, TD treatment maintained higher antioxidant enzyme activity and antioxidant content in 7 d after drought rehydration. The above results indicated that spraying triadimefon increased the activity of antioxidant enzymes in soybean roots under drought stress, enhanced the regeneration ability of AsA and GSH, increased the content of antioxidants, promoted the removal of reactive oxygen species in soybean roots, and alleviated the membrane lipid peroxidation. The higher antioxidant enzyme activity and antioxidant content after rehydration promoted the recovery of roots to normal physiological state. Therefore, TD treatment enhanced the drought resistance of soybean.
参考文献/References:
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(05):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(05):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(05):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(05):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(05):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(05):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(05):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(05):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(05):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(05):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
备注/Memo