WANG Chun-yu,XIE Zhi-huang,LI Yan-sheng,et al.Effects of Elevated Surface O3 on Soybean Yield Formation and Seed Quality in Different Northeast Cultivars[J].Soybean Science,2019,38(03):385-390.[doi:10.11861/j.issn.1000-9841.2019.03.0385]
近地表臭氧浓度升高对不同东北品种大豆产量形成及品质的影响
- Title:
- Effects of Elevated Surface O3 on Soybean Yield Formation and Seed Quality in Different Northeast Cultivars
- Keywords:
- Ozone; Soybean; Yield; Seed quality; Climate change
- 文献标志码:
- A
- 摘要:
-
为明确大气臭氧浓度升高对不同东北大豆品种产量形成和品质的影响,本研究以环境大气臭氧浓度为对照,利用开顶式气室模拟大气臭氧浓度升高40 nL?L-1,选取3个推广面积较大的大豆品种绥农4号、绥农8号和东生1号,研究在高臭氧浓度下不同大豆品种产量形成和品质的差异。结果表明:臭氧浓度升高对大豆产量形成具有明显的负作用,3个大豆品种的产量平均降低33%。不同大豆品种产量对臭氧浓度升高的响应存在明显差异,产量降低幅度:绥农4号(-41%)>东生1号(-36%)>绥农8号(-23%)。利用逐步回归法分析发现大气臭氧浓度升高条件下大豆籽粒大小(x1)和单株总荚数(x2)变化可以用于估计大豆产量变化,两者与大豆产量的回归方程:y=-3.639+0.098x1-0.285x2。此外,大气臭氧浓度升高对大豆品质产生明显影响,3个大豆品种籽粒中蛋白质浓度均显著提高2.8%~4.6%(P<0.05),而脂肪含量则显著降低4.2%~7.8%(P<0.05)。
- Abstract:
- The soybean yield formation and seed quality in response to the elevated atmospheric O3 (eO3) were analyzed in open top chamber (OTC) simulation systems using 3 soybean cultivars as Suinong 4, Suinong 8 and Dongsheng 1.The results showed that soybean yield decreased by 33% across 3 soybean cultivars when the concentrations of atmospheric O3 increased 40 nL?L-1. The yield response to eO3 varied in the 3 soybean cultivars. The minimum decrease of 23% was found in Suinong 4, while the maximum of 41% was found in Suinong 8. Compared with the control, the yield components of soybean were also changed under eO3. The stepwise regression analysis showed that the seed size(x1) and seed number per plant (x2) could be used for estimating soybean yield change under eO3 by a model of y=-3.639+0.098x1-0.285x2 (P<0.05). In addition, eO3 had pronounced influence on soybean seed quality, which caused significant increase in soybean seed protein concentration (2.8% to 4.6%,P<0.05) but significantly decrease in seed oil concentration (-4.2% to -7.8%,P<0.05) in the three tested cultivars.
参考文献/References:
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(03):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(03):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(03):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(03):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(03):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(03):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(03):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(03):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(03):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(03):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]张铭,王岩,赵天宏,等.臭氧浓度升高条件下秸秆还田对大豆光合荧光特性及产量的影响[J].大豆科学,2019,38(05):754.[doi:10.11861/j.issn.1000-9841.2019.05.0754]
ZHANG Ming,WANG Yan,ZHAO Tian-hong,et al.Effects of Straw Returning on Photosynthetic Fluorescence Characteristics and Yield of Soybean Under Elevated Ozone Concentration[J].Soybean Science,2019,38(03):754.[doi:10.11861/j.issn.1000-9841.2019.05.0754]
[12]孙铭禹,王岩,范仁雪,等.臭氧浓度升高条件下大豆光合能力变化及光响应曲线的拟合模型比较[J].大豆科学,2021,40(04):497.[doi:10.11861/j.issn.1000-9841.2021.04.0497]
SUN Ming-yu,WANG Yan,FAN Ren-xue,et al.Comparison of Photosynthetic Capacity and Light Response Curve Models of Soybean Under Elevated Ozone Concentration[J].Soybean Science,2021,40(03):497.[doi:10.11861/j.issn.1000-9841.2021.04.0497]
备注/Memo
收稿日期:2018-12-27