[1]滕露,于月华,何茹月,等.大豆miR164家族的生物信息学分析[J].大豆科学,2018,37(05):704-709.[doi:10.11861/j.issn.1000-9841.2018.05.0704]
 TENG Lu,YU Yue-hua,HE Ru-yue,et al.Bioinformatics Analysis of Soybean miR164Family[J].Soybean Science,2018,37(05):704-709.[doi:10.11861/j.issn.1000-9841.2018.05.0704]
点击复制

大豆miR164家族的生物信息学分析

参考文献/References:

[1]Liu H, Yu H, Tang G, et al. Small but powerful: Function of microRNAs in plant development[J]. Plant Cell Reports, 2018, 37(3):515-528.
[2]D′Ario M, Griffithsjones S, Kim M. Small RNAs: Big impact on plant development[J]. Trends in Plant Science, 2017, 22(12):1056-1068.
[3]Kumar V, Khare T, Shriram V, et al. Plant small RNAs: The essential epigenetic regulators of gene expression for salt-stress responses and tolerance[J]. Plant Cell Reports, 2018,37(1):61-75.
[4]Ohbayashi I, Sugiyama M. Plant nucleolar stress response, a new face in the nac-dependent cellular stress responses[J]. Frontiers in Plant Science, 2017, 8: 2247.
[5]Afa S, Sajad M, Nazaruddin N, et al. MicroRNA and transcription factor: Key players in plant regulatory network[J]. Frontiers in Plant Science, 2017, 8: 565.
[6]Kim H J, Nam H G, Lim P O. Regulatory network of NAC transcription factors in leaf senescence[J]. Current Opinion in Plant Biology, 2016, 33: 48-56.
[7]杨春文. 番茄miR164对花器官形成和果实发育的调控研究[D]. 重庆: 重庆大学, 2012:1-62. (Yang C W. Studies on the regulation of miR164on flower organ formation and fruit development in tomato[D]. Chongqing: Chongqing University, 2012:1-62. )
[8]Wei H, Yordanov Y S, Georgieva T, et al. Nitrogen deprivation promotes populus root growth through global transcriptome reprogramming and activation of hierarchical genetic networks[J]. New Phytologist, 2013, 200(2):483-497.
[9]李春贺,阴祖军,刘玉栋,等.盐胁迫条件下不同耐盐棉花miRNA差异表达研究[J].山东农业科学,2009(7): 12-17. (Li C H, Ying Z J, Liu Y D, et al. Study on miRNA differential expression of different salt tolerant cotton under salt stress[J]. Shandong Agricultural Science, 2009(7):12-17. )
[10]牟桂萍, 纪春艳, 许东林, 等. 植物miR164家族研究进展[J].生命科学, 2013, 25(5): 525-531. (Mu G P, Ji C Y, Xu D L, et al. Research progress of plant miR164family[J]. Chinese Bulletin of Life Sciences, 2013, 25(5):525-531.)
[11]Kim J H, Woo H R, Kim J, et al. Trifurcate feed-forward regulation of age-dependent cell death involving miR164in Arabidopsis[J]. Science, 2009, 323(5917):1053-1057.
[12]Wu X M, Liu M Y, Ge X X, et al. Stage and tissue-specific modulation of ten conserved miRNAs and their targets during somatic embryogenesis of Valencia sweet orange[J]. Planta, 2011, 233(3):495-505.
[13]Bazzini A A, Almasia N I, Manacorda C A, et al. Virus infection elevates transcriptional activity of miR164apromoter in plants[J]. BMC Plant Biology, 2009, 9(1):1-12.
[14]Li Y J, Fu Y, Ji L S, et al. Characterization and expression analysis of the Arabidopsis miR169 family[J]. Plant Science, 2010, 178(3):271-280.
[15]Zhao B, Ge L, Liang R, et al. Members of miR-169 amily are induced by high salinity and transiently inhibit the NF-YA transcription factor[J]. BMC Molecular Biology, 2009, 10(1):1-10.
[16]罗中钦. 大豆逆境胁迫相关microRNA的发掘与验证[D]. 北京: 中国农业科学院, 2012.(Luo Z Q. Discovery and validation of microRNA related to stress in Soybean[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012.)
[17]Sun Z, Wang Y, Mou F, et al. Genome-wide small RNA analysis of soybean reveals auxin-responsive microRNAs that are differentially expressed in response to salt stress in root apex[J]. Frontiers in Plant Science, 2016, 6:1273.
[18]许硕. 野生大豆盐胁迫相关microRNA的功能分析[D]. 北京: 中国农业科学院, 2011.(Xu S.Functional analysis of microRNA related to salt stress in wild soybean[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011.)
[19]Zhao B, Liang R, Ge L, et al. Identification of drought-induced microRNAs in rice[J]. Biochemical & Biophysical Research Communications, 2007, 354(2): 585-590.
[20]Zhou X, Wang G, Su T K, et al. Identification of cold-inducible microRNAs in plants by transcriptome analysis[J]. Biochemica et Biophysica Acta, 2008, 1779 (11): 780-788.
[21]Llave C, Xie Z, Kasschau K D, et al. Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA[J]. Science, 2002, 297(5589): 2053-2056.
[22]Nikovics K, Blein T, Peaucelle A, et al. The balance between the miR164aand CUC2genes controls leaf margin serration in Arabidopsis[J]. Plant Cell, 2006, 18(11): 2929-2945.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(05):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(05):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(05):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(05):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(05):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(05):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(05):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(05):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(05):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(05):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

收稿日期:2018-06-04

基金项目:国家自然科学基金(31660295);中国博士后科学基金(2015M582741);新疆维吾尔自治区天山英才计划(201720085);新疆农业大学校级大学生创新项目(dxscx2017001,dxscx2018001)。
第一作者简介:滕露(1995-),女,硕士,主要从事植物分子生物学研究。E-mail:894546653@qq.com。
通讯作者:倪志勇(1981-),男,博士,副教授,主要从事植物分子生物学研究。E-mail:nizhiyong@126.com。

更新日期/Last Update: 2018-10-08