[1]李大红,王春弘,刘喜平,等.大豆GmWRKY35基因的克隆及其增强烟草耐旱能力研究[J].大豆科学,2017,36(05):685-691.[doi:10.11861/j.issn.1000-9841.2017.05.0685]
 LI Da-hong,WANG Chun-hong,LIU Xi-ping,et al.Expression of GmWRKY35, a Soybean WRKY Gene, in Transgenic Tobacco Confers Drought Stress Tolerances[J].Soybean Science,2017,36(05):685-691.[doi:10.11861/j.issn.1000-9841.2017.05.0685]
点击复制

大豆GmWRKY35基因的克隆及其增强烟草耐旱能力研究

参考文献/References:

[1]Eulgem T, Rushton P J, Robatzek S,et al. WRKY superfamily of plant transcription factors[J]. Trends in Plant Science, 2000, 5(5):199-206.

[2]Rushton P J, Somssich I E, Ringler P, et al.WRKY transcription factors[J]. Trends in Plant Science, 2010, 15(5):247-258.
[3]Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and beta-amylase from sweet potato[J]. Molecular Genetics and Genomics, 1994, 244(6):563-571.
[4]Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response[J]. Plant Molecular Biology, 2003, 51(1):21-37.
[5]Zhang Z L, Xie Z, Zou X, et al. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells[J]. Plant Physiology, 2004, 134(4):1500-1513.
[6]Ling J, Jiang W, Zhang Y, et al. Genome-wide analysis of WRKY gene family in Cucumis sativus[J]. BMC Genomics, 2011, 12:471.
[7]Wang Y, Feng L, Zhu Y, et al.Comparative genomic analysis of the WRKY III gene family in populus, grape, Arabidopsis and rice[J]. Biology Direct, 2015, 10:48.
[8]Li P, Song A, Gao C, et al. Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants[J]. Plant Cell Reports, 2015, 34(8):1365-1378.
[9]Wang X, Zeng J, Li Y, et al. Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances[J]. Frontiers in Plant Science, 2015, 6:615.
[10]Proietti S, Bertini L, van der Ent S,et al.Cross activity of orthologous WRKY transcription factors in wheat and Arabidopsis[J]. Journal of Experimental Botany, 2011, 62(6):1975-1990.
[11]Adachi H, Nakano T, Miyagawa N, et al. WRKY transcription factors phosphorylated by MAPK regulate a plant immune NADPH oxidase in Nicotiana benthamiana[J]. The Plant Cell, 2015, 27(9):2645-2663.
[12]Machens F, Becker M, Umrath F, et al. Identification of a novel type of WRKY transcription factor binding site in elicitor-responsive cis-sequences from Arabidopsis thaliana[J]. Plant Molecular Biology, 2014, 84(4-5):371-385.
[13]Liu S, Kracher B, Ziegler J, et al.Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100[J]. Elife Sciences, 2015, 4:e07295.
[14]Qiao Z, Li C L, Zhang W. WRKY1 regulates stomatal movement in drought-stressed Arabidopsis thaliana[J]. Plant Molecular Biology, 2016, 91(1):53-65.
[15]Cai R, Zhao Y, Wang Y, et al.Overexpression of a maize WRKY-58 gene enhances drought and salt tolerance in transgenic rice[J]. Plant Cell, Tissue and Organ Culture (PCTOC) ,2014, 119(3):565-577.
[16]Li. S, Fu Q, Chen L,et al.Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance[J]. Planta, 2011, 233(6):1237.
[17]Kim C Y, Vo K T X, Cong D N,et al. Functional analysis of a cold-responsive rice WRKY gene, OsWRKY-71[J]. Plant Biotechnology Reports, 2016, 10(1):13-23.
[18]Zeng T, Kou Y, Liu H, et al. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice[J]. Journal of Experimental Botany, 2011, 62(14):4863.
[19]Li H L, Guo D, Yang Z P, et al. Genome-wide identification and characterization of WRKY gene family in Hevea brasiliensis[J]. Genomics, 2014, 104(1):14-23.
[20]Hagio T. Optimizing the particle bombardment method for efficient genetic transformation[J]. Japan Agricultural Research Quarterly, 1998, 32(4):239-247.
[21]Anoop N, Gupta A K. Transgenic indica Rice cv IR-50 Over-expressing Vigna aconitifolia Δ1 Pyrroline 5 Carboxylate Synthetase cDNA shows tolerance to high salt[J]. Journal of Plant Biochemistry and Biotechnology, 2003, 12(2):109-116.
[22]Xu X M, Moller S G. ROS removal by DJ-1: Arabidopsis as a new model to understand Parkinson′s disease[J]. Plant Signaling & Behavior,2010, 5(8):1034-1036.
[23]Li D H, Liu H, Yang Y L,et al. Down-regulated expression of RACK1 gene by RNA interference enhances drought tolerance in rice[J]. Rice Science, 2009, 16(1):14-20.
[24]Zhou Q Y, Tian A G, Zou H F, et al.Soybean WRKY type transcription factor genes, GmWRKY-13, GmWRKY-21, and GmWRKY-54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants[J]. Plant Biotechnology Journal, 2008, 6(5):486-503.
[25]Wu J, Chen J, Wang L,et al. Genome-wide investigation of WRKY transcription factors involved in terminal drought stress response in common bean[J]. Frontiers in Plant Science, 2017, 8:380.
[26]Wang M, Vannozzi A, Wang G,et al. Genome and transcriptome analysis of the grapevine (Vitis vinifera L) WRKY gene family[J]. Horticulture Research, 2014, 1:14016.
[27]Ren X, Chen Z, Liu Y, et al. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis[J]. The Plant Journal: For Cell and Molecular Biology,2010, 63(3):417-429.
[28]Lee S, Park C M. Regulation of reactive oxygen species generation under drought conditions in Arabidopsis[J]. Plant Signaling & Behavior, 2012, 7(6):599-601.
[29]Qin Y, Tian Y , Liu X . A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana[J]. Biochemical and Biophysical Research Communications, 2015, 464(2): 428-433.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(05):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(05):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(05):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(05):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(05):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(05):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(05):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(05):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(05):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(05):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

基金项目:河南省科技发展计划(112300410042)。

第一作者简介:李大红(1969-),男,博士,副教授,主要从事植物逆境生理研究。E-mail:lidahong27@163.com。

更新日期/Last Update: 2017-10-29