[1]李大红,蒋炳伸,邬海燕,等.苜蓿MsDREB1基因的诱导表达增强大豆的耐盐性[J].大豆科学,2017,36(01):17-23.[doi:10.11861/j.issn.1000-9841.2017.01.0017]
 LI Da-hong,JIANG Bing-shen,WU Hai-yan,et al.MsDREB1 Overexpression Improves Tolerance to Salt Stress in Transgenic Glycine max L.[J].Soybean Science,2017,36(01):17-23.[doi:10.11861/j.issn.1000-9841.2017.01.0017]
点击复制

苜蓿MsDREB1基因的诱导表达增强大豆的耐盐性

参考文献/References:

[1]Zhou L, Wang C, Liu R,et al. Constitutive overexpression of soybean plasma membrane intrinsic protein GmPIP1;6 confers salt tolerance[J]. BMC Plant Biology, 2014, 14(1):1-13.

[2]Boyer J S. Plant productivity and environment[J]. Science, 1982, 218(4571):443-448.
[3]Maas E V, Hoffman G J. Crop salt tolerance current assessmen[J]. Journal of the Irrigation and Drainage Division, 1977, 103(2): 115-134.
[4]Pathan M S, Lee J D, Shannon J G, et al. Recent advances in breeding for drought and salt stress tolerance in soybean[M]//Advances in molecular breeding toward drought and salt tolerant crops. Springer Netherlands, 2007: 739-773.
[5]Liu Q,Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. Plant Cell, 1998, 10: 1391-1406.
[6]Srivasta A, Mehta S, Lindlof A, et al. Over-represented promoter motifs in abiotic stress-induced DREB genes of rice and sorghum and their probable role in regulation of gene expression[J]. Plant Signaling & Behavior, 2010, 5(7): 775-784.
[7]Dubouzet J G, Sakuma Y, Ito Y,et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought, high-salt and cold-responsive gene expression[J]. Plant Journal, 2003, 33:751-763.
[8]Cong L I,Guo M Y, Han L B. Overexpression of OjDREB gene increases tolerance to salt in transgenic tobacco[J]. Acta Tabacaria Sinica, 2012(4):72-76.
[9]Shen Y G, Zhang W K, Yan D Q, et al. Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis[J]. Theoretical Applied Genetics, 2003,107: 155-161.
[10]Oh S J, Song S I, Kim Y S,et al. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth[J]. Plant Physiology, 2005, 138: 341-351.
[11]Hsieh T H, Lee J T,Charng Y Y, et al. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress[J]. Plant Physiology, 2002, 130: 618-626.
[12]Ito Y,Katsura K, Maruyama K, et al. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice[J]. Plant Cell Physiology, 2006, 47: 141-153.
[13]Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J]. Nature Biotechnology, 1999, 17: 287-291.
[14]Pellegrineschi A, Reynolds M, Pacheco M, et al. Stressed-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions[J]. Genome, 2004, 47: 493-500.
[15]Haake V, Cook D, Riechmann J L, et al. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis[J]. Plant Physiology, 2002, 130(2):639-648.
[16]Siddiqua M, Nassuth A. Vitis CBF1 and Vitis CBF4 differ in their effect on Arabidopsis abiotic stress tolerance, development and gene expression[J]. Plant Cell Environment, 2011, 34:1345-1359.
[17]Lyu Z Y, Zhao C M, Xue Y G. Cloning and expression analysis of grape′s stress inducible promoter[J]. Acta Agriculturae Boreali-Sinica. 2016, 31(1): 77-82.
[18]Kasuga M, Miura S, Shinozaki K, et al. A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought and low temperature stress tolerance in tobacco by gene transfer[J]. Plant Cell Physiology, 2004,45(3):346-350.
[19]Fu D L, Huang B R, Xiao Y M, et al. Overexpression of barley hva1 gene in creeping bentgrass for improving drought tolerance[J]. Plant Cell Report, 2007, 26(4):467-477.
[20]Chen J Q, Meng X P, Zhang Y,et al. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice[J]. Biotechnology Letters, 2008,30(12):2191-2198.?
[21]Bhatnagar-Mathur P, Devi M J, Vadez V, et al. Differential antioxidative responses in transgenic peanut bear no relationship to their superior transpiration efficiency under drought stress[J]. Journal of Plant Physiology, 2009, 166(11):1207-1217.
[22]Westgate M E, Peterson C M. Flower and pod development in water-deficient soybeans (Glycine max L. Merr) [J]. Journal of Experimental Botany, 1993, 44(258):109-117.
[23]Murraym G, Thompson W F. Rapid isolation of high molecular weight plant DNA[J]. Nucleic Acids Research, 1980, 8:4321-4325.
[24]Sombrook J, Russell D W. Molecular cloning a laboratory manual[M]. Huang P T, Translated. 3rd ed. Beijing: Science Press, 2002, 487-513.?
[25]Li D H, Liu H, Yang Y L, et al. Down-regulated expression of RACK1 gene by RNA interference enhances drought tolerance in rice[J]. Rice Science, 2009, 16(1):14-20.
[26]Gao J F. Experimental instruction of plant physiology[M]. Beijing: Higher Education Press, 2006 : 211 - 213, 217.?
[27]Chen M,Xu Z S, Ma Y Z. Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine max L. ) [J]. Journal of Experimental Botany , 2009, 60(1): 121-135.
[28]Mallikarjuna G, Mallikarjuna K, Reddy M K,et al. Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.)[J]. Biotechnology Letters, 2011, 33(8):1689-1697.
[29]Zandkarimi H, Ebadi A, Salami S A,et al. Analyzing the expression profile of, AREB/ABF, and DREB/CBF, genes under drought and salinity stresses in grape (Vitis vinifera L.) [J]. Plos One, 2015, 10(7): e0134288.
[30]Zhou M L, Ma J T, Pang J F, et al. Regulation of plant stress response by dehydration responsive element binding (DREB) transcription factors[J]. African Journal of Biotechnology, 2010, 9(54):9255-9269.
[31]Li Z,Wurtzel E T. The ltk gene family encodes novel receptor-like kinases with temporal xpression in developing maize endosperm[J].Plant Molecular Biology 1998, 37: 749-761.
[32]Li D F, Zhang Y Q, Hu X N, et al. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses[J]. BMC Plant Biology, 2011,11(1):1-19.
[33]Peng Y L, Wang Y S, Cheng H, et al. Characterization and expression analysis of three CBF/DREB1 transcriptional factor genes from mangrove Avicennia marina[J]. Aquatic Toxicology, 2013, 141:68-76.
[34]Peng Y L, Wang Y S, Cheng H, et al. Characterization and expression analysis of a gene encoding CBF/DREB1 transcription factor from mangrove Aegiceras corniculatum[J]. Ecotoxicology, 2015, 24(7):1-11.
[35]Zhu J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53(53):247-273.
[36]Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress[J]. The Plant Cell, 2002, 14(S 1): 165-183.
[37]Krasensky J, Jonak C. Drought, salt and temperature stress-induced metabolic rearrangements and regulatory networks[J]. Journal of Experimental Botany, 2012, 63(4): 1593-1608.
[38]Liu Q,Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. The Plant Cell, 1998, 10(8): 1391-1406.
[39]Tao Y, Wang Y G, Li H J, et al. Upstream Messengers of abscisic acid signaling pathway in plant[J]. Journal of Nuclear Agricultural Sciences, 2016(9):9.?
[40]Li X L, Yang C P, Qu M, et al. Study on cloning of rd29A promoter and enhancing stress tolerance of tobacco[J]. Molecular Plant Breeding, 2007, 5(1): 37-42.?
[41]Qiu W, Liu M, Qiao G, et al. An isopentyl transferase gene driven by the stress-inducible rd29a promoter improves salinity stress tolerance in transgenic tobacco[J]. Plant Molecular Biology Reporter, 2012, 30(3): 1-10.
[42]Nie L Z, Yu X X, Li G J, et al. Study on transgenic potato contained AtCDPK1 gene drived by Rd29A Promoter[J]. China Biotechnology, 2015, 35(11):13-22.
[43]Zhao P, Li M,Ji Z F, et al. Counter-measures of drought physiology response in plant[J].Chinese Agricultural Science Bulletin,2016,32(15):86-92.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

基金项目:河南省科技发展计划(112300410042)。

第一作者简介:李大红(1969-),男,博士,副教授,主要从事植物逆境生理研究工作。E-mail:lidahong27@163.com。
通讯作者:蒋炳伸(1975-),女,博士,副教授,主要从事植物生态学研究工作。E-mail:574618863@qq.com。

更新日期/Last Update: 2017-03-14