[1]郭娜,崔晓霞,赵晋铭,等.大豆疫霉根腐病相关miRNA的鉴定[J].大豆科学,2015,34(04):666-670.[doi:10.11861/j.issn.1000-9841.2015.04.0666]
 GUO Na,CUI Xiao-xia,ZHAO Jin-ming,et al.Identification of miRNA Resistant to Phytophthora Root Rot in Soybean[J].Soybean Science,2015,34(04):666-670.[doi:10.11861/j.issn.1000-9841.2015.04.0666]
点击复制

大豆疫霉根腐病相关miRNA的鉴定

参考文献/References:

[1]Kaufmann M J, Gerdemann J W. Root and stem rot of soybeans caused by Phytophthora. f. sp. sojae[J].Phytopathology, 1958, 48: 201-208

[2]Hildebrand A A. A root and stalk rot of soybean caused by Phytophthora megasperma Drechsler var.sojae[J] Canadian Journal of Botany, 1959, 37: 927-937
[3]沈崇尧, 苏彦纯. 中国大豆疫病的发现及初步研究[J]. 植物病理学报, 1991, 21(4):298. (Shen C Y, Su Y C. Discovery and preliminary studies of Phytophthora megasperma on soybean in China[J].Acta Phytopathologica Sinica, 1991, 21(4):298)
[4]朱振东, 王化波, 王晓鸣, 等. 中国大豆疫霉菌分布及毒力多样性研究[J]. 中国农业科学, 2003, 36(7):793-799(Zhu Z D, Wang H B, Wang X M, et al. Distribution and virulence diversity of Phytophthora sojae in China[J] Scientia Agricultura Sinica, 2003, 36(7):793- 799)?
[5]陈庆河, 翁启勇, 王源超, 等.福建省大豆疫病病原鉴定及其核糖体DNA-ITS序列分析[J].植物病理学报, 2004, 34(2):112-116.(Chen Q H, Weng Q X, Wang Y C, et al. Identification and sequencing of ribosomal DNA-ITS of Phytophthora sojae in Fujian[J].Acta Phytopathologica Sinica, 2004, 34(2):112-116)
[6]Bhattacharyya M K, Narayanan N N, Gao H, et al. Identification of a large cluster of coiled coil-nucleotide binding site-leucine rich repeat-type genes from the Rps1k region containing Phytophthora resistance genes in soybean[J].Theoretical and Applied Genetics, 2005, 111: 75-86
[7]Kasuga T, Salimath S S, Shi J, et al. High resolution genetic and physical mapping of molecular markers linked to the Phytophthora-resistance gene Rps1-k. in soybean[J].Molecular Plant Microbe Interactions, 1997, 10: 1035-1044
[8]Gao H, Bhattacharyya M.The soybean Phytophthora resistance locus Rps1-k encompasses coiled coil-nucleotide bingingleucine rich repeat-like genes and repetitive sequences[J] BMC Plant Biology, 2008, 8: 29
[9]Sunkar R, Zhu J K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J]. Plant Cell, 2004, 16: 2001-2019
[10]Sunkar R, Girke T, Jain P K, et al. Cloning and characterization of microRNAs from rice[J]. Plant Cell, 2005, 17: 1397-1411
[11]Zhang B, Pan X, Anderson T A. Identification of 188 conserved maize microRNAs and their targets[J].FEBS Letter, 2006, 580: 3753-3762
[12]Zhang B, Pan X, Stellwag E J. Identification of soybean microRNAs and their targets[J]. Planta, 2008, 229: 161-182
[13]Arazi T, TalmorNeiman M, Stav R, et al. Cloning and characterization of microRNAs from moss[J]. Plant Journal, 2005, 43: 837-848
[14]Zhang W, Gao S, Zhou X, et al. Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks[J]. Plant Molecular Biology, 2011, 75: 93-105
[15]Zhang X, Zou Z, Gong P, et al. Over-expression of microRNA169 confers enhanced drought tolerance to tomato[J].Biotechnol Letter, 2011, 33: 403-409
[16]Zhu C, Ding Y, Liu H.MiR398 and plant stress responses[J]. Physiol Plant, 2011, 143(1):1-9
[17]Zhang B, Pan X, Cannon C H, et al. Conservation and divergence of plant microRNA genes[J].Plant Journal, 2006, 46: 243-259
[18]Navarro L, Dunoyer P, Jay F, et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling[J]. Science, 2006, 312: 436-439
[19]Zeiner G M, Norman K L, Thomson J M, et al.Toxoplasma gondii infection specifically increases the levels of key host microRNAs[J].PLoS One, 2010, 5: e8742
[20]Zeng Y, Cullen B R. Sequence requirements for microRNA processing and function in human cells[J]. RNA, 2003, 9: 112-123
[21]孙石.大豆疫霉根腐病抗性的遗传分析及基因鉴定和分子作图 [D]. 南京:南京农业大学, 2008:43-55(Sun S. Genetic analysis and molecular marker of resistence to phytophthora sojae in soybean [D] Nanjing: Nanjing Agricultural University, 2008: 43-55)
[22]Subramanian S, Fu Y, Sunkar R, et al. Novel and nodulation-regulated microRNAs in soybean roots[J]. BMC Genomics, 2008, 9: 160
[23]Wang Y, Li P, Cao X, et al. Identification and expression analysis of miRNAs from nitrogenfixing soybean nodules[J]. Biochemical and Biophysical Research Communications, 2009, 378: 799-803
[24]Kulcheski F R, de Oliveira L F, Molina L G, et al.Identification of novel soybean microRNAs involved in abiotic and biotic stresses[J].BMC Genomics, 2011, 12: 307.

相似文献/References:

[1]郑世英,萧蓓蕾,金桂芳.NaCl胁迫对野生大豆和栽培大豆叶绿素及光合特性的影响[J].大豆科学,2013,32(04):486.[doi:10.11861/j.issn.1000-9841.2013.04.0486]
 ZHENG Shi-ying,XIAO Bei-lei,JIN Gui-fang.Effect of NaCl Stress on Chlorophyll Content and Photosynthetic Characteristics of Glycine soja and Glycine max[J].Soybean Science,2013,32(04):486.[doi:10.11861/j.issn.1000-9841.2013.04.0486]
[2]胡卫静,何丽君,何劲莉,等.NaCl胁迫对野生与栽培大豆杂交后代株系生理指标的影响[J].大豆科学,2013,32(03):349.[doi:10.11861/j.issn.1000-9841.2013.03.0349]
 HU Wei-jing,HE Li-jun,HE Jin-li,et al.Effects of NaCl Stress on Physiological Characters of Soybean Hybrids from Glycine max × Glycine soja[J].Soybean Science,2013,32(04):349.[doi:10.11861/j.issn.1000-9841.2013.03.0349]
[3]郑世英,郑建峰,张秀玲,等.NaCl胁迫对野生及栽培大豆渗透调节物质含量的影响[J].大豆科学,2011,30(05):786.[doi:10.11861/j.issn.1000-9841.2011.05.0786]
 ZHENG Shi-ying,ZHENG Jian-feng,ZHANG Xiu-ling,et al.Effect of NaCl Stress on the Content of Osmotic Regulation Substances in Glycine soja and Glycine max[J].Soybean Science,2011,30(04):786.[doi:10.11861/j.issn.1000-9841.2011.05.0786]
[4]马光,郭继平,魏淑珍,等.干旱胁迫下野生大豆和栽培大豆生理特性比较[J].大豆科学,2011,30(06):1057.[doi:10.11861/j.issn.1000-9841.2011.06.1057]
 MA Guang,GUO Ji-ping,WEI Shu-zhen,et al.Comparison on Physiological Characteristics of Glycine soja and Glycine max under Drought Stress[J].Soybean Science,2011,30(04):1057.[doi:10.11861/j.issn.1000-9841.2011.06.1057]
[5]李发院,田 芳,张晓可,等.栽培大豆和野生大豆及其回交后代苗期耐盐性分析[J].大豆科学,2012,31(04):593.[doi:10.3969/j.issn.1000-9841.2012.04.016]
 LI Fa-yuan,TIAN Fang,ZHANG Xiao-ke,et al.Analysis of Seedlings Salt Tolerance of Backcross Hybrids of Glycine maxand Glycine soja[J].Soybean Science,2012,31(04):593.[doi:10.3969/j.issn.1000-9841.2012.04.016]
[6]纪展波,蒲伟凤,李桂兰,等.野生大豆、半野生大豆和栽培大豆对苗期干旱胁迫的生理反应[J].大豆科学,2012,31(04):598.[doi:10.3969/j.issn.1000-9841.2012.04.017]
 JI Zhan-bo,PU Wei-feng,LI Gui-lan,et al.Physiological Reaction of Glycine soja,Glycine gracilisand Glycine max to Drought Stress in Seedling Stage[J].Soybean Science,2012,31(04):598.[doi:10.3969/j.issn.1000-9841.2012.04.017]
[7]高小宽,刘国杰,白丽荣.聚乙二醇(PEG)模拟干旱胁迫对野生大豆与栽培大豆萌发的影响[J].大豆科学,2012,31(06):1027.[doi:10.3969/j.issn.1000-9841.2012.06.037]
 GAO Xiao-kuan,LIU Guo-jie,BAI Li-rong.Effect of Polyethylene Glycol(PEG)Simulated Drought Stress on Seed Germination of Wild and Cultivated Soybeans[J].Soybean Science,2012,31(04):1027.[doi:10.3969/j.issn.1000-9841.2012.06.037]
[8]吴伟,等.栽培大豆端粒相关序列的克隆及定位[J].大豆科学,2010,29(03):380.[doi:10.11861/j.issn.1000-9841.2010.03.0380]
 WU Wei,LI Hong-jie,et al.Cloning and Mapping of Telomere Associated Sequence in Soybean[J].Soybean Science,2010,29(04):380.[doi:10.11861/j.issn.1000-9841.2010.03.0380]
[9]王岚.野生与栽培大豆某些性状的比较及其在大豆育种中的利用[J].大豆科学,2010,29(04):575.[doi:10.11861/j.issn.1000-9841.2010.04.0575]
 WANG Lan.Comparsion of Several Character between Glycine soja and Glycine max and Its Utilization in Soybean Breeding[J].Soybean Science,2010,29(04):575.[doi:10.11861/j.issn.1000-9841.2010.04.0575]
[10]梁江,陈渊,汤复跃,等.利用18S rRNA基因部分序列研究大豆种质资源的进化关系[J].大豆科学,2010,29(04):586.[doi:10.11861/j.issn.1000-9841.2010.04.0586]
 LIANG Jiang,CHEN Yuan,TANG Fu-yue,et al.Reveal the Evolutionary Relationship of Soybean Germplasm by Comparing 18S rRNA Gene Sequences[J].Soybean Science,2010,29(04):586.[doi:10.11861/j.issn.1000-9841.2010.04.0586]

备注/Memo

基金项目:南京农业大学青年科技创新基金(KJ2012001);国家自然科学基金(31301340);江苏省自然科学基金(BK20130684);长江学者和创新团队发展计划(PCSIRT13073)。

第一作者简介:郭娜(1984-),女,博士,讲师,主要从事大豆抗病性研究。E-mail:guona@njau.edu.cn。
通讯作者:邢邯(1963-),男,教授,博导,主要从事大豆遗传和育种工作。E-mail:hanx@njau.edu.cn。

更新日期/Last Update: 2015-09-01