LUAN Bai,GAO Tong-guo,JIANG Feng,et al.Effect of Fulvic Acid (FA) from Lignite Degraded on Germination Rate and Activities of Main Antioxidases in Soybean Seedlings[J].Soybean Science,2010,29(04):607-610.[doi:10.11861/j.issn.1000-9841.2010.04.0607]
微生物降解褐煤产生的黄腐酸对大豆种子萌发及主要抗氧化酶活性的影响
- Title:
- Effect of Fulvic Acid (FA) from Lignite Degraded on Germination Rate and Activities of Main Antioxidases in Soybean Seedlings
- 文章编号:
- 1000-9841(2010)04-0607-04
- Keywords:
- Soybean; Fulvic acid; Biodegradation; Antioxidase
- 分类号:
- S565.1
- 文献标志码:
- A
- 摘要:
- 研究了微生物降解褐煤产生的黄腐酸(FA)对大豆萌发过程中过氧化物酶(POD)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)的影响,以期揭示FA促进种子萌发的机理。结果表明:适宜浓度FA可以提高大豆萌发率,显著增加种子POD、CAT及SOD的活性。FA浓度为100 mg·kg-1时,CAT、SOD活性分别提高32.15%、24.5%;FA浓度为200 mg·kg-1时,大豆萌发率比对照提高34.6%,并且POD活性增加19.92%。而高浓度的黄腐酸对大豆萌发及抗氧化酶活性产生抑制作用。FA表现出类似生长调节剂的性质,适宜浓度的黄腐酸能提高大豆种子的萌发率,显著提高其抗氧化酶的活性,对种子萌发起到促进作用。
- Abstract:
- The antioxidase system can remove reactive oxygen and play an important role in the process of soybean germination. To study how fulvic acid (FA),produced by microbial degraded lignite, can improve the germination, Spectrophotometry and nitroblue tetrazolium test (NBT) ilumination method were taken to detect the activities of peroxidase (POD) , catalase (CAT) and superoxide dismutase (SOD). The results showed when the concentration of FA was 100 mg·kg-1, the activities of CAT and SOD were improved by 32.15% and 24.5%,respectively. The germination ratio increased by 34.6% under a condition where the concentration of FA was 200 mg·kg-1,and the activity of POD was also increased by 19.92% under this FA concentration. In contrast with the promotion effect, solution with high FA concentration can restrain the activities of antioxidase. The study has shown that appropriate concentration of FA from lignite degraded by microorganism can improve the germination of soybean and increase the activities of POD, CAT and SOD significantly. FA is something like plant growth regulator, the appropriate concentration of FA can improve the germination ratio of soybean seed and improve its activities of antioxidase apparently.
参考文献/References:
[1]张立军,宋广州,白霜,等. H2O2对不同大豆品种低温萌发及主要抗氧化酶活性的影响[J]. 大豆科学,2008,27(1):97-105.(Zhang L J, Song G Z, Bai S, et al. Effect of exogenous H2O2 on germination rate and activities of main antioxidase in soybean (Glycine maxL.) seedlings under low temperature[J]. Soybean Science, 2008,27(1):97-105.) [2]郝晶,张立军,谢甫绨. 低温对大豆不同耐冷性中萌发期保护酶活性的影响[J]. 大豆科学, 2007,26(2):171-175.( Hao J, Zhang L J, Xie F T. Effects of the low temperature on defense enzyme activities of different chilling-tolerant soybean cultivars during the germination [J]. Soybean Science, 2007,26(2):171-175.) [3]Adani F, Genevini P, Zaccheo P, et al. The effect of commercial humic acid on tomato plant growth and mineral nutrition[J]. Journal Plant Nutrure,1998,21(3):561-575. [4]程渡,彭玉梅,崔鲜一,等.黄腐酸旱地龙对农作物、牧草应用效果试验[J].腐植酸,1996(3):33-34.(Cheng D, Peng Y M, Cui X Y, et al. The effect test of applying handilong and fulvic acid to crops and Herd’s grass[J]. Humic Acid, 1996(3):33-34.) [5]袁红莉,姜峰,高同国.微生物降解褐煤产生黄腐酸的研究[J]. 腐植酸,2009(5):1-4.( Yuan H L, Jiang F, Gao T G. Study on biotechnology application in producing fulvic acid by degraded lignite [J]. Humic Acid, 2009(5):1-4.) [6]袁红莉,王凤芹,李宝珍,等.微生物降解褐煤产生的腐殖酸生物活性研究[J].土壤学报,2002,39(增刊):129-134. (Yuan H L, Wang F Q, Li B Z, et al. The biological active research of humic acid from lignite degraded [J]. Acta Pedologica Sinica, 2002,39(Suppl):129-134.) [7]袁红莉,周希贵,陈文新,等.微生物降解褐煤产生的腐植酸化学特性研究[J].环境化学,2000,19(3):240-243.( Yuan H L, Cai Y Q, Zhou X G , et al.Study on chemical properties of humic acid of microboal degraded lignite[J]. Environmental Chemistry, 2000, 19(3):240-243.) [8]朱京涛,曹霞,王学东.生物黄腐酸对番茄幼苗发育及产量品质的影响[J]. 安徽农业科学,2009, 37(3):964-965,968.(Zhu J T,Cao X,Wang X D. Study on effects of the biological humic acid on seedlings growth and quality of tomato [J]. Journal of Anhui Agricultural Sciences,2009,37(3):964-965,968.) [9]苏桂华,王云忠,藩世华.黄腐酸药浴治疗良性关节肿痛328例[J].腐植酸,1996 (2):35-45. (Su G H, Wang Y Z, Pan S H. The 328th case of fulvic acid dipping treatment to cure the swelling and pain of benign joint[J].Humic Acid, 1996(2):35-45.) [10]李绪行,邵莉楣,殷蔚薏,等.黄腐酸和汪平酸对小麦种子萌发与幼苗生长及绿豆下胚轴生根的影响[J].植物学通报,1991,8(3):51-55.( Li X H, Shao L M, Yin W Y,et al. The influencences of fulvic acid and wangping acid on seed germination and seedling growth of wheat and rhizogenic action of mung bean [J]. Chinese Bulletin of Botany,1991,8(3):51-55.) [11]李绪行,殷蔚薏,邵莉楣,等.黄腐酸增强小麦抗旱能力的生理生化机制初探[J].植物学通报,1992,9(2):44-46.(Li X H,Yin W Y,Shao L M,et al. Preliminary investigation of physiological and biochemical mechanisms on drought-resistance of wheat enhanced by leaf-spraying fulvic acid [J]. Chinese Bulletin of Botany,1992,9(2):44-46.) [12]王高伟,胡光洲,孔倩,等.煤炭腐植酸的基本性能及其工农业应用[J].煤炭技术,2007,26(11):111-114.( Wang G W,Hu G Z,Kong Q, et al .Properties of humic acid in coal and its applications in industry and agriculture[J]. Coal Technology, 2007, 26(11):111-114.) [13]袁红莉,陈文新. 微生物降解生产黄腐酸方法:中国,02158189.4[P].2004-07-07. (Yuan H L, Chen W X. Methods of manufacturing fulvic acid by micro-biological degradation:PR China,02158189.4[P].2004-07-07.) [14]张德和.风化煤黄腐酸的结构表征[J].化学学报,1981,39(5):401-408. (Zhang D H. Structure characterizations of weathered coal fulvic acid[J]. Chemistry Academic Journal, 1981,39(5):401-408.) [15]张志良.植物生理学实验指导[M]. 北京:高等教育出版社, 1990:154-156.(Zhang Z L. Guidance of plant physiology experiment [M]. Beijing: Higher Education Press, 1990:154-156.) [16]Kraus T E, Fletcher R A. Wheat seedlings from heat and paraquat injury is detoxification of active oxygen involved[J]. Plant Cell Physiology, 1994, 35(1):45-52. [17]朱广廉,钟海文,张爱琴,等. 植物生理学实验指导[M]. 北京:北京大学出版社,1990:242-245.(Zhu G L, Zhong H W, Zhang A Q,et al. Guidance of plant physiology experiment [M]. Beijing:Peking University Press,1990:242-245.) [18]程扶玖,杨道麒,吴庆生. 黄腐酸对油菜种子萌发、氮素吸收及抗寒性的生理效应[J]. 安徽农业大学学报,1995(2):123-128.(Cheng F J, Yang D Q, Wu Q S. Physiological effects of fulvic acid (FA) on seed germination, nitrogen uptake and cold resistance of rape [J]. Journal of Anhui Agricultural University, 1995(2):123-128.) [19]陈玉玲,曹敏,李云萌.干旱条件下黄腐酸对冬小麦幼苗中内源ABA和IAA以及SOD和POD活性的影响[J].植物生理学通讯, 2000,36(4):311-314.( Chen Y L, Cao M, Li Y Y. Effect of fulvic acid on aba, iaa and activities of superoxide dismu-tase and peroxydase in winter wheat seedling under drought condition [J]. Plant Physiology Communications, 2000, 36(4):311-314.) [20]Muscolo A, Felici M, Concheri G,et al. Effect of earthworm humic substances on esterase and peroxidase activity during growth of leaf explants of Nicotiana plumbaginifolia[J]. Biology and Fertility of Soils, 1993,15:127-131. [21]高同国,姜峰,李召虎,等.微生物降解褐煤产生的黄腐酸对玉米幼苗生长的影响[J].腐植酸,2009(1):14-18.( Gao T G,Yang J S,Yuan H L.Effects of fulvic acid from lignite degraded by microbial on growth of maize seedling[J]. Humic Acid, 2009(1):14-18.)
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(04):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(04):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(04):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(04):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(04):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(04):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(04):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(04):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(04):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(04):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
备注/Memo
基金项目:国家高技术研究发展计划资助项目(2006AA10A213);国家基础科学人才培养基金资助项目(J0730639);科技部成果转化资助项目(2008360075)。