DUAN Ying-ying,ZHAO Lin,CHEN Li-miao,et al.Comparison and Optimization of the Agrobacterium-mediated Transformation of Soybean by Using Cotyledonary Node and Hypocotyl Explants[J].Soybean Science,2010,29(04):590-593,597.[doi:10.11861/j.issn.1000-9841.2010.04.0590]
农杆菌介导的大豆子叶节和下胚轴转化方法的比较及优化
- Title:
- Comparison and Optimization of the Agrobacterium-mediated Transformation of Soybean by Using Cotyledonary Node and Hypocotyl Explants
- 文章编号:
- 1000-9841(2010)04-0590-04
- 分类号:
- S565.1
- 文献标志码:
- A
- 摘要:
- 以东农50、东农42和黑农44的子叶节和下胚轴为外植体,对农杆菌介导的大豆子叶节和下胚轴2种转化方法进行了比较和优化。结果表明:不同转化方法对大豆的品种要求不同,东农50适合子叶节转化法,而黑农44适合下胚轴转化法。在子叶节转化体系中,卡那霉素的筛选浓度是100 mg·L-1,在下胚轴转化体系中,卡那霉素的筛选浓度是75 mg·L-1,可见下胚轴体系比子叶节体系在卡那霉素筛选过程中表现得更为敏感。在子叶节和下胚轴转化体系中,最适乙酰丁香酮浓度均为200 mol·L-1,最适共培养时间均为3 d。在子叶节转化体系中,5 d苗龄时转化率最高,而下胚轴转化体系中,4~6 d苗龄时转化率均较高,以6 d苗龄最高。
- Abstract:
- Soybean cotyledonary node and hypocotyl transformation methods were compared and optimized using three soybean genotypes, Dongnong 50, Dongnong 42 and Heinong 44.The results showed that different transformation methods required different soybean varieties. Dongnong 50 was suitable to cotyledonary node transformation method, while Heinong 44 was suitable to hypocotyl transformation method. In the cotyledonary node transformation system, the screening concentration of Kanamycin was 100 mg·L-1, while in the hypocotyl transformation system was 75 mg·L-1,the hypocotyl transformation system was more sensitive than the cotyledonary node transformation system to kanamycin. The optimal concentration of acetosyringone was both 200 mol·L-1,the optimal co-culture time was both 3 d in the cotyledonary node and hypocotyl transformation systems. In the cotyledonary node transformation system, conversion rate was the highest when the seedling age was 5 d, while in the hypocotyl transformation system, conversion rate was higher in 4-6 d, in which the highest was 6 d.
参考文献/References:
[1]Singh R J,Hymowitz T.Soybean genetic resources and crop improvement[J].Genome,1999,42: 605-616. [2]Cheng T Y,Saka T,Voqui-Dinh T H.Plant regeneration from soybean cotyledonary node segments in culture[J].Plant Sciences,1980,19:91-99. [3]Kaneda Y,Tabei Y,Nishimura S.Combination of thidiazuron and basal medium with low salt concentrations increases the frequency of shoot organogenesis soybeans(Glycine max(L.) Merr.)[J].Plant Cell Reports,1997,17:8-12. [4]张晓娟,方小平,罗丽霞,等.TDZ和BA对诱导大豆胚轴植株再生的影响[J].中国油料作物学报,2000,22(1):24-26.(Zhang X J, Fang X P, Luo L X,et al. Influence of TDZ and BA on efficiency of plant regeneration via organogenesis in soybean[J].Chinese Journal of Oil Crop Sciences,2000,22(1):24-26.) [5]Liu Z H,Wang W C,Yan S Y.Effect of hormone treatment on callus formation and endogenous indoleacetic acid and polyamine contents of soybean hypocotyl cultivated in vitro[J].Botanical Bulletin of Academia Sinica,1997,38:171-176. [6]Wang G L, Xu Y N.Hypocotyl-based Agrobacterium-mediated transformation of soybean (Glycine max) and application for RNA interference[J]. Plant Cell Reports,2008,25:535-539. [7]Hinchee M A W, Conner-Ward D V, Newell C A, et al. Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer[J]. Nature Biotechnology,1988,6:915-922. [8]McCabe D E, Swain W F, Martinell B J,et al. Stable transformation of soybean (Glycine max) by particle acceleration[J]. Nature Biotechnology,1988,6:923-926. [9]Paula M,Olhoft Lex E,Flagel Christopher M,et al.Efficient soybean transformation using hygromycin B selection in the cotyledonarynode method[J].Planta,2003,216:723-735. [10]Ishida Y H,Satto S,Ohta Y,et al.High effieieney trans formation of maize mediated by Agrobaeterium Tumefaeiens[J].Nature Biotechnology,1996,14(6):745-750. [11]刘海坤,卫志明.大豆遗传转化研究进展[J].植物生理与分子生物学学报, 2005,31(2): 126- 134.(Liu H K,Wei Z M.Recent advances in soybean genetic transformation[J].Journal of Plant Physiology and Molecular Biology,2005,31(2):126-134.) [12]王翠亭,卫志明.重要禾谷类粮食作物的遗传转化[J].植物生理学通讯,2001,38(2):105-110. (Wang C T,Wei Z M.Genetic transformation of important cereal crops[J].Plant Physiology Communication,2001,38(2):105-110.) [13]Harold N T,Randy D D,Eliane R S,et al.Recent advances in soybean transformation[J].Plant Tissue Culture and Biotechnology,1997,3:9-26. [14]Clemente T E, LaValle B J, Howe A R, et al. Progeny analysis of glyphosate-selected transgenic soybeans derived from Agrobacterium-mediated transformation[J].Crop Sciences, 2000, 40: 797-803. [15]Meyer P.Repeat-induced gene silence:common mechanisms in plant and fungi[J].Biology Chemistry Hoppe-Seyler,1996,277:87-95. [16]王关林,方宏筠.植物基因工程原理与技术[M].北京:科学出版社,1998:220.(Wang G L,Fang H Y.Plant genetic engineering theory and technology[M]. Beijing:Science Press,1998:220.)
相似文献/References:
[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(04):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(04):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(04):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(04):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(04):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(04):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(04):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(04):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(04):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(04):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
备注/Memo
基金项目:转基因生物新品种培育科技重大专项资助项目(2008ZX08004-005、2009ZX08009-089B);哈尔滨市科技创新人才研究专项资助项目(RC2008QN002017);东北农业大学博士启动基金资助项目;大豆生物学省部共建教育部重点实验室开放基金资助项目(SB08A04);黑龙江省教育厅科学技术研究资助项目(11541029)。