LIU Su-shuang,QIU Ying-sheng,LIU Yan-min,et al.Analysis of Soybean GmPM31 Bioinformatics,Tissue Expression and Response to High Temperature and High Humidity[J].Soybean Science,2021,40(05):612-619.[doi:10.11861/j.issn.1000-9841.2021.05.0612]
大豆GmPM31基因生物信息学、组织表达及高温高湿响应分析
- Title:
- Analysis of Soybean GmPM31 Bioinformatics,Tissue Expression and Response to High Temperature and High Humidity
- Keywords:
- Spring soybean; GmPM31; Bioinformatics analysis; Cis-element; Expression; Seed; High temperature and high humidity stress
- 文献标志码:
- A
- 摘要:
- sHSPs家族基因GmPM31具有典型的ACD结构域,为了预测和研究GmPM31的功能,本研究以田间劣变抗性春大豆湘豆3号为材料,分离GmPM31及其启动子序列,对该基因的结构及启动子上的顺式作用元件进行生物信息学分析,采用qRT-PCR方法对GmPM31的组织表达模式及高温高湿处理下的表达量变化进行分析。结果表明:GmPM31基因的ORF全长为459 bp,编码153个氨基酸,包含1个ACD保守域结构。蛋白质系统进化树分析结果显示,GmPM31与CI(Class I)亚家族的sHSPs同源性较高,表明GmPM31属于Class I sHSPs家族成员。GmPM31基因启动子中有多个逆境胁迫响应元件,包括激素应答相关元件ABRE、ERE和AAGAA-motif等,干旱和冷胁迫相关的MYB和MYC转录因子作用元件,高盐胁迫相关元件Box III,厌氧胁迫相关元件ARE等。qRT-PCR结果显示,GmPM31在成熟种子中大量表达,其次在幼荚和叶片中表达,在根、茎和花中表达量极低。种子发育过程中,GmPM31表达量呈现先上升后下降的趋势,在开花后第45天表达量达到最大。高温高湿胁迫处理96和168 h时种子中GmPM31的表达量显著高于对照组,说明高温高湿胁迫诱导种子中GmPM31上调表达。研究结果表明GmPM31参与了春大豆种子的发育以及高温高湿胁迫响应过程。
- Abstract:
- GmPM31 contains a typical ACD domain of the sHSPs family.In order to predict and study the function of GmPM31,we isolated the sequence of GmPM31 and its promoter from spring field deterioration resistant soybean Xiangdou 3,and resistance the structure and cis-regulatory element of GmPM31 by bioinformatics.In addition,we analyzed the tissue expression pattern and the expression levels of GmPM31 under high temperature and high humidity by qRT-PCR.The results showed that the complete ORF of GmPM31 was 459 bp.GmPM31 encoded 153 amino acids and contained a highly conserved ACD domain.The results of the evolutionary tree showed that GmPM31 has high homology with the Class I sHSPs,so we speculated GmPM31 may belong to the Class I sHSPs family.The prediction result of promoter cis-elements showed that the GmPM31 promoter contained many stress responsive elements such as hormone responsive element ABRE,ERE,AAGAA-motif,element involoved in MYB and MYC transcription factors related to drought and cold stress,high salt stress responsive element Box III,and anaerobic stress responsive element ARE.qRT-PCR results showed that the highest expression level of GmPM31 was found in mature seeds,followed by in young pods and leaves,and a lowest expression level in root,stems,leaves and flowers.Over the seed developing,the expression of GmPM31 increased at first and then decreased,and reached higher levels at 45 d after flowering.Compared to the corresponding control,the expression of GmPM31 in seeds was significantly higher at 96 and 168 h under high temperature and high humidity stress,which indicated that GmPM31 in seeds was up-regulated by high temperature and high humidity stress.These results showed that GmPM31 was involved in the development of spring soybean seeds and the response to high temperature and high humidity stress.
参考文献/References:
[1]周亚丽,朱雅婧,赵飞云,等.大豆GmLEA的分离及其在种子活力中的功能分析[J].中国农业科学,2018,51(23):4397-4408.(Zhou Y L,Zhu Y J,Zhao F Y,et al.Isolation and functional analysis of soybean GmLEA in seed vigor[J].Scientia Agricultura Sinica,2018,51(23):4397-4408.)[2]Liu S S,Jia Y H,Zhu Y J,et al.Soybean matrix metalloproteinase Gm2-MMP relates to growth and development and confers enhanced tolerance to high temperature and humidity stress in transgenic Arabidopsis[J].Plant Molecular Biology Reporter,2018,36(1):94-106.[3]王芳,王丽群,田鑫,等.中国南方春大豆收获前后种子劣变的抗性研究[J].中国农业科学,2007,40(11):2637-2647.(Wang F,Wang L Q,Tian X,et al.Pre-harvest and post-harvest seed deterioration resistance of spring soybean germplasm in South China[J].Scientia Agricultura Sinica,2007,40(11):2637-2647.)[4]Liu S S,Jia Y H,Zhu Y J,et al.Soybean matrix metalloproteinase Gm2-MMP relates to growth and development and confers enhanced tolerance to high temperature and humidity stress in transgenic Arabidopsis[J].Plant Molecular Biology Reporter,2018,36(1):94-106.[5]Chow T Y,Lin T Y,Hsing Y C.A soybean seed maturation protein cDNA GmPM31 (accession No.AF117885) encode a class I low molecular weight heat shock protein.(PGR99-177)[J].Plant Physiology,1999,121(4):1383.[6]张宁,姜晶.植物中小分子热激蛋白基因家族(sHSPs)研究进展[J].植物生理学报,2017,53(6):943-948.(Zhang N,Jiang J.Research advances of small heat shock protein gene family (sHSPs) in plants[J].Plant Physiology Journal,2017,53(6):943-948.)[7]王敏,江彪,林毓娥,等.小分子热激蛋白参与植物抗逆性方面的研究进展[J].安徽农业科学,2018,46(18):29-32,35.(Wang M,Jiang B,Lin Y E,et al.Advances of small heat shock proteins participating in plant resistance[J].Journal of Anhui Agricultural Sciences,2018,46(18):29-32,35.)[8]Basha E,O’Neill H,Vierling E.Small heat shock proteins and α-crystallins:Dynamic proteins with flexible functions[J].Trends in Biochemical Sciences,2012,37(3):106-117.[9]Sun W N,Vanmontagu M,Verbruggen N.Small heat shock proteins and stress tolerance in plants[J].Biochimica et Biophysica Acta,2002,1577(1):1-9.[10]Wang W Q,Ye J Q,Rogowska-wrzesinska A,et al.Proteomic comparison between maturation drying and prematurely imposed drying of zea mays seeds reveals a potential role of maturation drying in preparing proteins for seed germination,seedling vigor,and pathogen resistance[J].Journal of Proteome Research,2014,13(2):606-626. [11]Arce D P,Krsticevic F J,Bertolaccini M R,et al.Analysis of small heat shock protein gene family expression (RNA-seq) during the tomato fruit maturation[J].IFMBE Proceedings,2015,49(3):679-682.[12]Zhang N,Shi J,Zhao H,et al.Activation of small heat shock protein (SlHSP17.7) gene by cell wall invertase inhibitor (SlCIF1) gene involved in sugar metabolism in tomato[J].Gene,2018,679:90-99.[13]李春梅.大豆种子蛋白的差异蛋白质组研究[D].南京:南京农业大学,2007.(Li C M.Comparative proteomic analysis on soybean seed protein[D].Nanjing:Nanjing Agricultural Univ-ersity,2007.)[14]Lopescaitar V S,Carvalho M C D,Darben L M,et al.Genome-wide analysis of the Hsp20 gene family in soybean:Comprehensive sequence,genomic organization and expression profile analysis under abiotic and biotic stresses[J].BMC Genomics,2013,14:577.[15]Yu X M,Jin H X,Fu X J,et al.Quantitative proteomic analyses of two soybean low phytic acid mutants to identify the genes associated with seed field emergence[J].BMC Plant Biology,2019,19(1):569.[16]Wang S,Tao Y,Zhou Y L,et al.Translationally controlled tumor protein GmTCTP interacts with GmCDPKSK5 in response to high temperature and humidity stress during soybean seed development[J].Plant Growth Regulation,2017,82(1):187-200.[17]俞佳虹,冯坤,程远,等.植物小热激蛋白的研究进展[J].分子植物育种,2017,15(8):3016-3023.(Yu J H,Feng K,Cheng Y,et al.Research progress on small heat shock proteins in plants[J].Molecular Plant Breeding,2017,15(8):3016-3023.)[18]McHaourab H S,Godar J A,Stewart P L.Structure and mechanism of protein stability sensors:Chaperone activity of small heat shock proteins[J].Biochemistry,2009,48(18):3828-3837.[19]Ma C,Haslbeck M,Babujee L,et al.Identification and chara-cterization of a stress-inducible and a constitutive small heat-shock protein targeted to the matrix of plant peroxisomes[J].Plant Physiology,2006,141:47-60.[20]Hernandez-Garcia C M,Finer J J.Identification and validation of promoters and cis-acting regulatory elements[J].Plant Science,2014,217-218:109-119.[21]冯玉芹.过表达内质网小分子热激蛋白对拟南芥抗逆性的影响[D].济南:山东师范大学,2010.(Feng Y Q.The study of the transgenic Arabidopsis with overexpression of endoplasmic reticulum small heat shock protein[D].Jinan:Shandong Normal University,2010.)[22]Chen X,Lin S,Liu Q,et al.Expression and interaction of small heat shock proteins (sHsps) in rice in response to heat stress[J].Biochimica et Biophysica Acta,2014,1844(4):818-828.[23]Neelam K S,Sachin K,Manu A,et al.Silencing of class I small heat shock proteins affects seed related attributes and thermo-tolerance in rice seedlings[J].Planta,2020,251:26.[24]Sedaghatmehr M,Mueller-Roeber B,Balazadeh S.The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis[J].Nature Communications,2016,7:12439.[25]Sanchez-Bel P,Egea I,Sanchez-Ballesta M T,et al.Proteome changes in tomato fruits prior to visible symptoms of chilling injury are linked to defensive mmechanisms,uncoupling of photosynthetic processes and protein degradation machinery[J].Plant Cell Physiology,2012,53(2):470-484.[26]Zhang J,Chen H,Wang H,et al.Constitutive expression of a tomato small heat shock protein gene LeHSP21 improves tolerance to high-temperature stress by enhancing antioxidation capacity in tobacco[J].Plant Molecular Biology Report,2016,34(2):399-409.[27]Wang L Q,Ma H,Song L R,et al.Comparative proteomics analysis reveals the mechanism of pre-harvest seed deterioration of soybean under high temperature and humidity stress[J].Journal of Proteomics,2012,75(7):2109-2127.[28]Tao Y,Chen M,Shu Y J,et al.Identification and functional characterization of a novel BEL1-LIKE homeobox transcription factor GmBLH4 in soybean[J].Plant Cell,Tissue and Organ Culture,2018,134(2):331-344.
相似文献/References:
[1]舒英杰,周玉丽,陶 源,等.模拟田间劣变对生理成熟期春大豆植株生长及种子活力的影响[J].大豆科学,2013,32(05):635.[doi:10.11861/j.issn.1000-9841.2013.05.0635]
SHU Ying-jie,ZHOU Yu-li,TAO Yuan,et al.Effect of Simulated Preharvest Deterioration Stress on Plant Growth and Seed Vigor of Spring Soybean at Physiological Maturity Stage[J].Soybean Science,2013,32(05):635.[doi:10.11861/j.issn.1000-9841.2013.05.0635]
[2]高 会,王美娥,赵叶舟,等.春大豆种子形成过程中β-淀粉酶的作用及与胎萌的关系[J].大豆科学,2013,32(06):768.[doi:10.11861/j.issn.1000-9841.2013.06.0768]
[3]肖佳雷,赵 明,王贵江,等.东北春大豆“三合结构”定量方程确立及其高产途径分析[J].大豆科学,2013,32(06):773.[doi:10.11861/j.issn.1000-9841.2013.06.0773]
[4]吴秀红.春大豆EMS诱变M1、M2代主要农艺性状的遗传变异及相关性[J].大豆科学,2011,30(05):760.[doi:10.11861/j.issn.1000-9841.2011.05.0760]
WU Xiu-hong.Genetic Variations and Correlation of the Main Agronomic Characters in M1 and M2 Population of Spring Soybean Induced by EMS[J].Soybean Science,2011,30(05):760.[doi:10.11861/j.issn.1000-9841.2011.05.0760]
[5]张晓春,陈 红,黄世龙,等.春大豆氮肥施用与大豆品种组合优选研究[J].大豆科学,2012,31(02):255.[doi:10.3969/j.issn.1000-9841.2012.02.019]
ZHANG Xiao-chun,CHEN Hong,HUANG Shi-long,et al.Optimal Combination of Nitrogen Fertilizer and Spring Soybean Varieties in Chongqing[J].Soybean Science,2012,31(05):255.[doi:10.3969/j.issn.1000-9841.2012.02.019]
[6]董守坤,赵坤,刘丽君,等.干旱胁迫对春大豆叶绿素含量和根系活力的影响[J].大豆科学,2011,30(06):949.[doi:10.11861/j.issn.1000-9841.2011.06.0949]
DONG Shou-kun,ZHAO Kun,LIU Li-jun,et al.Effect of Drought Stress on Chlorophyll Content and Root Activity of Spring Soybean[J].Soybean Science,2011,30(05):949.[doi:10.11861/j.issn.1000-9841.2011.06.0949]
[7]宁海龙,孙培乐,宋兆华,等.不同播期对春大豆生态性状的影响[J].大豆科学,2011,30(01):73.[doi:10.11861/j.issn.1000-9841.2011.01.0073]
NING Hai-long,SUN Pei-le,SONG Zhao-hua,et al.Effect of Sowing Dates on Ecological Traits of Spring Soybean[J].Soybean Science,2011,30(05):73.[doi:10.11861/j.issn.1000-9841.2011.01.0073]
[8]刘剑丽,宁海龙,孙培乐,等.春大豆播期光温效应的研究[J].大豆科学,2011,30(03):428.[doi:10.11861/j.issn.1000-9841.2011.03.0428]
LIU Jian-li,NING Hai-long,SUN Pei-le,et al.Effect of Light and Temperature under Different Sowing Date on Spring Soybean (Glycine max L. Merill)[J].Soybean Science,2011,30(05):428.[doi:10.11861/j.issn.1000-9841.2011.03.0428]
[9]孙培乐,宁海龙,陈东升,等.春大豆不同播期的光温生态特性[J].大豆科学,2010,29(06):953.[doi:10.11861/j.issn.1000-9841.2010.06.0953]
SUN Pei-le,NING Hai-long,CHEN Dong-sheng,et al.Ecological Character of Light and Temperature under Different Sowing Date in Spring Soybean (Glycine max L. Merill)[J].Soybean Science,2010,29(05):953.[doi:10.11861/j.issn.1000-9841.2010.06.0953]
[10]章建新,李劲松.窄行密植对高产春大豆根系生长的影响[J].大豆科学,2007,26(04):500.[doi:10.3969/j.issn.1000-9841.2007.04.010]
ZHANG Jian-xin,LI Jin-song.THE EFFECT OF SOLID SEEDING ON THE GROWTH OF SOYBEAN ROOT IN HIGH YIELD SPRING SOYBEAN[J].Soybean Science,2007,26(05):500.[doi:10.3969/j.issn.1000-9841.2007.04.010]
备注/Memo
收稿日期:2021-04-14