WEN Hong-tao,YANG Yang,DING Yi-jia,et al.Establishment of qPCR and 3D-dPCR Detection Method of Genetically Modified Soybean MON87701[J].Soybean Science,2020,39(02):212-219.[doi:10.11861/j.issn.1000-9841.2020.02.0212]
转基因大豆MON87701品系qPCR和3D-dPCR检测方法的建立
- Title:
- Establishment of qPCR and 3D-dPCR Detection Method of Genetically Modified Soybean MON87701
- Keywords:
- Genetically modified soybean; MON87701; Quantitative detection; qPCR; 3D-dPCR
- 文献标志码:
- A
- 摘要:
- 转基因大豆MON87701是由孟山都公司研发的商业化抗虫大豆品系,目前已在17个国家广泛应用。为建立适用于MON87701大豆的高效检测方法,本研究基于实时荧光定量PCR(real-time fluorescence quantitive PCR, qPCR)和芯片式数字PCR(3D digital PCR, 3D-dPCR)平台,对44种不同转基因材料进行测试,建立双重定量检测方法。研究结果显示:只在转基因大豆MON87701样品中获得了阳性结果,证实该方法中引物和探针组合具有较高的特异性。进一步对2%、0.9%、0.09%和0.02%不同含量的MON87701转基因大豆进行定量测试,建立的qPCR和3D-dPCR两种方法的定量限均达到0.09%,检出限均达到0.02%,两者并无明显差别,但由于3D-dPCR和qPCR相比不需要标准物质制作标准曲线,并且对DNA提取质量要求更低,因此使用起来更加便捷高效,为转基因检测提供了新的方法和思路。
- Abstract:
- Genetically modified (GM) soybean event MON87701 is a commercial insect resistant soybean developed by Monsanto company, which has been widely used in 17 countries. In order to established efficient detection method of MON87701, this study established duplex quantitative detection method based on real-time fluorescence quantitive PCR (qPCR) and 3D digital PCR (3D-dPCR) platforms and tested 44 different transgenic materials. The result showed: The positive results were only obtained in the samples of MON87701, which confirmed that the primer and probe combination in the method had high specificity. The LOQs of the both methods were 0.09% and the LODs were 0.02%. There was no significant difference between the two methods. However, 3D-dPCR method does not need reference materials and the requirement on DNA quality is lower, it is more convenient and efficient providing new methods and ideas for the GMO detection.
参考文献/References:
[1]国际农业生物技术应用服务组织. 2017年全球生物技术/转基因作物商业化发展态势[J]. 中国生物工程杂志, 2018, 38(6): 1-8.(International Agricultural Biotechnology Application Service Organization. Global status of commercialized biotech/GM crops: 2017[J]. China Biotechnology, 2018, 38(6) : 1-8.)[2]徐琳杰, 刘培磊, 熊鹂, 等. 国际上主要国家和地区农业转基因产品的标识制度[J]. 生物安全学报, 2014, 23(3): 301-304. (Xu L J, Liu P L, Xiong L, et al. International labeling policies for genetically modified agricultural products[J]. Journal of Biosafety, 2014, 23(3): 301-304.)[3]王颢潜, 陈锐, 李夏莹, 等. 转基因产品成分检测技术研究进展[J]. 生物技术通报, 2018, 34(3):1-6. (Wang H Q, Chen R, Li X Y, et al. Research progress on the testing technologies for composition in genetically modified products[J]. Biotechnology Bulletin, 2018, 34(3):1-6.)[4]Cankar K, Stebih D, Dreo T, et al. Critical points of DNA quantification by real-time PCR-effects of DNA extraction method and sample matrix on quantification of genetically modified organisms[J]. BMC Biotechnology, 2006, 6(1): 37.[5]Drries H H, Remus I, Grnewald A, et al. Development of a qualitative, multiplex real-time PCR kit for screening of genetically modified organisms(GMOs)[J]. Analytical and Bioanalytical Chemistry, 2010, 396(6):2043-2054.[6]杜智欣, 焦悦, 张亮亮, 等. 转基因成分定量检测技术研究进展[J]. 食品工业科技, 2017, 38(10): 379-384. (Du Z X, Jiao Y, Zhang L L, et al. Development of quantitative detection techniques of genetically modified organisms[J]. Science and Technology of Food Industry, 2017, 38(10):379-384.)[7]Hindson B J, Ness K D, Masquelier D A, et al. Highthrough put droplet digital PCR system for absolute quantitation of DNA copy number[J]. Analytical Chemistry, 2011, 83(22): 8604-8610.[8]Pinheiro L B, Coleman V A, Hindson C M, et al. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification[J]. Analytical Chemistry, 2011, 84(2): 1003-1011.[9]王青, 刘宝瑞. 液滴数字PCR在肿瘤个体化治疗方面的应用[J]. 现代肿瘤医学, 2015, 23(12): 1771-1774. (Wang Q,Liu B R. Application of dropplet digital PCR in personalized cancer therapy[J]. Journal of Modern Oncology, 2015, 23(12): 1771-1774.)[10]陈爱亮, 吴英, 蒋小玲, 等. 一种利用数字PCR检测食品中大肠菌群数量的方法[P]. 中国, CN201310613503.1. 2014-03-26.(Chen I L, Wu Y, Jiang X L, et al. A method of detecting coliform in food by digital PCR[P]. China, CN201310613503.1.2014-03-26.)[11]胡佳莹, 姜羽, 杨立桃, 等. 利用QuantStudioTM 3D分析转基因玉米MON863含量[J]. 农业生物技术学报, 2016, 24(8): 1216-1224.(Hu J Y, Jiang Y, Yang L T, et al. Quantification of genetically modified maize (Zea mays) MON863 by QuantStudioTM 3D digital PCR [J]. Journal of Agricultural Biotechnology, 2016, 24(8): 1216-1224.)[12]付海滨, 闫超杰, 李姝, 等. 转基因抗虫大豆MON87701品系实时荧光PCR检测方法的建立[J]. 辽宁农业科学, 2016(4): 23-26. (Fu H B, Yan C J, Li S, et al. Establishment of event specific real-time PCR method for detection of genetically modified soybean[J]. Liaoning Agricultural Sciences, 2016(4): 23-26.)[13]Mazzara M, Delobel C, Pinski G, et al. Event-specific method for the quantification of soybean MON87701 using real-time PCR[R]. European Union Reference Laboratory for GM Food and Feed, 2012.[14]SN/T 1204-2016. 植物及其加工产品中转基因成分实时荧光PCR定性检验方法[S]. (SN/T 1204-2016. Protocol of the real-time PCR method for detecting genetically modified plants and their derived products[S].)[15]European Network of GMO Laboratories (ENGL).Definition of minimum performance requirements for analytical methods of GMO testing [R]. European Union Reference Laboratory for GM Food and Feed, 2015.[16]于晓帆, 高宏伟, 孙敏, 等. 荧光PCR和数字PCR法检测转基因DAS-44406-6品系大豆[J]. 食品科学, 2016, 16(37): 235-241. (Yu X F, Gao H W, Sun M, et al. Detection of genetically modified soybean event DAS-44406-6 by real-time PCR method and digital PCR[J]. Food Science, 2016, 16(37): 235-241.)[17]任怡菲, 高琴, 邓婷婷, 等. 基于数字PCR的转基因水稻LL62品系精准定量检测方法建立[J]. 生物技术通报, 2016, 32(8): 69-76. (Ren Y F, Gao Q, Deng T T, et al. Establishment of precisely quantitative method of genetically modified rice LL62 based on digital PCR[J]. Biotechnology Bulletin, 2016, 32(8): 69-76.)[18]张佳玲, 潘广, 章桂明, 等. 微滴式数字PCR定量检测转基因玉米品系VCO-01981-5[J]. 食品科学, 2017, 12(38): 246-252. (Zhang J L, Pan G, Zhang G M, et al. Quantitative detection of transgenic maize event VCO-01981-5 with droplet digital PCR[J]. Food Science, 2017, 12(38): 246-252.)[19]缪青梅, 汪小福, 陈笑芸, 等. 基于双重微滴数字PCR精准定量转基因水稻G6H1的方法研究[J]. 农业生物技术学报, 2019, 27(1): 159-169. (Miao Q M, Wang X F, Chen X Y, et al. Studies on accurate quantification of genetically modified rice (Oryza sativa) G6H1 based on duplex droplet digital PCR[J]. Journal of Agricultural Biotechnology, 2019, 27(1): 159-169.)[20]刘津, 李婷, 冼钰茵, 等. 转基因大豆MON89788双重数字PCR通用定量检测方法的建立[J].食品科学, 2018, 4(39): 312-319. (Liu J, Li T, Xian Y Y, et al. An universal quantitative detection method for genetically modified soybean event MON89788 using duplex digital PCR[J]. Food Science, 2018, 4(39): 312-319.)[21]刘晓, 朱鹏宇, 王垚, 等. 数字PCR在功能核酸精准检测中的研究进展[J]. 生物技术通报, 2018, 34(9): 149-162. (Liu X, Zhu P Y, Wang Y. Development progress of digital PCR in the precise detection of functional nucleic acid[J]. Biotechnology Bulletin, 2018, 34(9): 149-162.)
相似文献/References:
[1]林凡敏,柏锡,樊超,等.转GsGST14耐盐碱基因大豆的农艺性状调查[J].大豆科学,2013,32(01):56.[doi:10.3969/j.issn.1000-9841.2013.01.013]
LIN Fan-min,BAI Xi,FAN Chao,et al.Investigation and Analysis of the Main Agronomic Traits of Different Transgenic Soybean Lines with GsGST14 Gene[J].Soybean Science,2013,32(02):56.[doi:10.3969/j.issn.1000-9841.2013.01.013]
[2]芦春斌,周文,刘标.喂食转基因大豆对子代雄鼠生殖系统的影响[J].大豆科学,2013,32(01):119.[doi:10.3969/j.issn.1000-9841.2013.01.028]
LU Chun-bin,ZHOU Wen,LIU Biao.Effects of Transgenic Soybean on Reproductive System in Male Mice[J].Soybean Science,2013,32(02):119.[doi:10.3969/j.issn.1000-9841.2013.01.028]
[3]王 东,宋 君,叶先林,等.转基因大豆外源基因NOS终止子定量测定的不确定度分析[J].大豆科学,2013,32(05):601.[doi:10.11861/j.issn.1000-9841.2013.05.0601]
WANG Dong,SONG Jun,YE Xian-lin,et al.[J].Soybean Science,2013,32(02):601.[doi:10.11861/j.issn.1000-9841.2013.05.0601]
[4]程 遥.中国大豆种植业发展的思考[J].大豆科学,2013,32(05):711.[doi:10.11861/j.issn.1000-9841.2013.05.0711]
CHENG Yao.Consideration on the Development of China Soybean Industry[J].Soybean Science,2013,32(02):711.[doi:10.11861/j.issn.1000-9841.2013.05.0711]
[5]周 洁,于 崧,王珊珊,等.抗盐碱转基因大豆对根际土壤固氮细菌多样性的影响[J].大豆科学,2013,32(06):801.[doi:10.11861/j.issn.1000-9841.2013.06.0801]
ZHOU Jie,YU Song,WANG Shan-shan,et al.Effects of Salinization Resistance Transgenic Soybeans on Rhizosphere Soil Nitrogen-fixing Bacterial Diversity[J].Soybean Science,2013,32(02):801.[doi:10.11861/j.issn.1000-9841.2013.06.0801]
[6]厉 志,王曙明,刘 佳,等.广适性转bar基因大豆除草剂草丁膦筛选浓度的研究[J].大豆科学,2013,32(06):810.[doi:10.11861/j.issn.1000-9841.2013.06.0810]
LI zhi,WANG Shu-ming,LIU Jia,et al.Study on Screening Concentration of Wide Adaptability Herbicide Resistant? bar Transgenic Soybean[J].Soybean Science,2013,32(02):810.[doi:10.11861/j.issn.1000-9841.2013.06.0810]
[7]何龙凉,胡红东,李小琴,等.防城港口岸进境转基因大豆贸易概况及检验检疫分析[J].大豆科学,2013,32(04):539.[doi:10.11861/j.issn.1000-9841.2013.04.0539]
HE Long-liang,HU Hong-dong,LI Xiao-qin,et al.General Situation of Imported Genetically Modified Soybean in Fangchenggang Port and Its Inspection and Quarantine Analysis[J].Soybean Science,2013,32(02):539.[doi:10.11861/j.issn.1000-9841.2013.04.0539]
[8]周广彪,蔡 颖,陈文婉,等.QuickGene-810型自动核酸提取仪在转基因大豆检测中的应用研究[J].大豆科学,2014,33(03):434.[doi:10.11861/j.issn.1000-9841.2014.03.0434]
ZHOU Guang-biao,CAI Ying,CHEN Wen-wan,et al.Application of Quick Gene810 Automated Nucleic Acid Extraction Instrument on Detection of Genetically Modified Soybean[J].Soybean Science,2014,33(02):434.[doi:10.11861/j.issn.1000-9841.2014.03.0434]
[9]张彬彬,李永光,盖江南,等.转TaDREB3基因大豆基因漂流距离及频率的研究[J].大豆科学,2011,30(04):563.[doi:10.11861/j.issn.1000-9841.2011.04.0563]
ZHANG Bin-bin,LI Yong-guang,GAI Jiang-nan,et al.Distance and Frequency of Gene Flow in Transgenic Soybean Overexpressing TaDREB3[J].Soybean Science,2011,30(02):563.[doi:10.11861/j.issn.1000-9841.2011.04.0563]
[10]陈晟,郭丽琼,宋景深,等.T5代γ-亚麻酸转基因大豆的遗传稳定性分析[J].大豆科学,2012,31(01):24.[doi:10.3969/j.issn.1000-9841.2012.01.006]
CHEN Sheng,GUO Li-qiong,SONG Jing-shen,et al.Genetic Stability Analysis of the Fifth Generation of Transgenic Soybeans Expressing γ-linolenic Acid[J].Soybean Science,2012,31(02):24.[doi:10.3969/j.issn.1000-9841.2012.01.006]
备注/Memo
收稿日期:2019-06-04