XU Xin-zhou,MA Kai-ping.Prediction and Analysis of Soybean Price in China Based on System Dynamics[J].Soybean Science,2018,37(05):787-793.[doi:10.11861/j.issn.1000-9841.2018.05.0787]
基于系统动力学的我国大豆价格预测分析
- Title:
- Prediction and Analysis of Soybean Price in China Based on System Dynamics
- Keywords:
- Soybean price; System dynamics; Prediction
- 文献标志码:
- A
- 摘要:
- 大豆是我国传统的农作物,同时也是我国市场需求量较高的大宗农产品。合理地预测大豆价格对我国大豆市场具有重要的经济价值和现实意义。本文将大豆价格及其影响因素定义为非线性、高噪音、波动大的非时变系统,利用系统动力学的理论,绘制因果关系图研究大豆供给、需求、价格因素之间的因果反馈关系,并构造出一个系统动力学模型。系统模拟了人口因素、经济因素、大豆供给量、大豆消费量、其它油料作物价格等因素对大豆价格的影响,采用2006-2016年的大豆价格年度数据进行了仿真和实证,进而对2017-2020年的我国大豆价格年度数据进行预测。结果证明该模型具备有效的预测能力,预测精度较高。因具备系统动力学的特征,研究更
- Abstract:
- Soybean is a traditional crop in China. It is also a large agricultural product with high demand in China. Reasonable prediction of soybean prices has important economic and practical significance for China′s soybean market. This paper defines the price of soybean and its influencing factors as a non-time-varying system with nonlinear, high noise and large fluctuation, by using the theory of system dynamics. The causality diagram is drawn to study the causal feedback relationship between the soybean supply, demand and price factors, and construct a systematic dynamic model. The influence of factors such as population, economic factors, soybean supply, soybean consumption, soybean consumption, and other oil crop prices on the price of soybean was systematically simulated. The annual data of 2006-2016 soybean prices were simulated and proved, and then forecast annual soybean price data for 2017-2020 in China. The results showed that the model has effective prediction ability and high prediction accuracy. Due to the characteristics of system dynamics, it focuses more on the future trend of soybean prices, and then provides references for soybean practitioners and agricultural economic policies in China.
参考文献/References:
相似文献/References:
[1]刘欢,张冬青.基于分位数回归的国产大豆价格影响因素分析[J].大豆科学,2014,33(05):759.[doi:10.11861/j.issn.1000-9841.2014.05.0759]
LIU Huan,ZHANG Dong-qing.Analysis on Influencing Factors of Domestic Soybean Price Based on Quantile Regression[J].Soybean Science,2014,33(05):759.[doi:10.11861/j.issn.1000-9841.2014.05.0759]
[2]陈昕,周曙东.贸易环境变动对国内外大豆价格传导机制的影响分析[J].大豆科学,2016,35(01):148.[doi:10.11861/j.issn.1000-9841.2016.01.0148]
CHEN Xin,ZHOU Shu-dong.Research of Impact of Trade Environment Change on Domestic and Foreign Soybean Price Transmission System[J].Soybean Science,2016,35(05):148.[doi:10.11861/j.issn.1000-9841.2016.01.0148]
[3]范震,马开平,姜顺婕,等.基于改进GM(1,N)模型的我国大豆价格影响因素分析及预测研究[J].大豆科学,2016,35(05):847.[doi:10.11861/j.issn.1000-9841.2016.05.0847]
FAN Zhen,MA Kai-ping,JIANG Shun-jie,et al.Influence Factors Analysis and Price Prediction of Soybean in China Based on Improved GM (1, N) Model[J].Soybean Science,2016,35(05):847.[doi:10.11861/j.issn.1000-9841.2016.05.0847]
[4]高磊,张冬青,叶方如,等.基于符号回归的国产大豆价格影响因素分析[J].大豆科学,2017,36(05):782.[doi:10.11861/j.issn.1000-9841.2017.05.0782]
GAO Lei,ZHANG Dong-qing,YE Fang-ru,et al.Analysis on Influencing Factors of Domestic Soybean Price Based on Symbolic Regression[J].Soybean Science,2017,36(05):782.[doi:10.11861/j.issn.1000-9841.2017.05.0782]
备注/Memo
收稿日期:2018-05-14