[1]张小芳,王冰冰,徐燕,等.PEG模拟干旱胁迫下野生大豆转录组分析 [J].大豆科学,2018,37(05):681-689.[doi:10.11861/j.issn.1000-9841.2018.05.0681]
 ZHANG Xiao-fang,WANG Bing-bing,XU Yan,et al.The Transcriptome Analysis of Wild Soybean Under Drought Stress Simulated by PEG[J].Soybean Science,2018,37(05):681-689.[doi:10.11861/j.issn.1000-9841.2018.05.0681]
点击复制

PEG模拟干旱胁迫下野生大豆转录组分析

参考文献/References:

[1]Yuan C P, Wang Y J, Zhao H K, et al. Genetic diversity of rhg1and rhg4loci in wild soybeans resistant to soybean cyst nematode race 3[J]. Genetics & Molecular Research, 2016, 15(2): gmr7386.

[2]杨如萍,包振贤,陈光荣,等.大豆抗旱性研究进展[J].作物杂志, 2012(5): 8-12. (Yang R P, Bao Z X, Chen G R, et al. The research progress in drought resistance of soybean[J]. Crops, 2012(5): 8-12. )
[3]Lam H M, Xu X, Liu X, et al. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection[J]. Nature Genetics, 2010, 42(12):1053-1059.
[4]Kim M Y, Lee S,van K, et al. Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107: 22032-22037.
[5]王克晶, 李向华. 国家基因库野生大豆(Glycine soja)资源最近十年考察与研究[J]. 植物遗传资源学报,2012(4): 507-514.(Wang K J, Li X H. Exploration and studies of wild soybean germplasm resources in the China genebank during recent decade[J]. Journal of Plant Genetic Resources,2012(4):507-514.)
[6]Kosová K, Vítámvás P, Urban M O, et al.Plant abiotic stress proteomics: The major factors determining alterations in cellular proteome[J]. Frontiers in Plant Science, 2018, 9:122.
[7]Teng Z Q, Hui-Qing F U, Jia S H, et al. Review of current progress in the metabolomics for plant response to abiotic stress[J]. Crop Research, 2011, 35(1):110-118.
[8]Fan X D, Wang J Q, Yang N, et al. Gene expression profiling of soybean leaves and roots under salt, saline-alkali and drought stress by high-throughput Illumina sequencing[J]. Gene, 2013, 512(2): 392-402.
[9]Wang X, Oh M, Sakata K, et al. Gel-free/label-free proteomic analysis of root tip of soybean over time under flooding and drought stresses[J]. Journal of Proteomics, 2016, 130:42.
[10]Berretta J, Morillon A. Pervasive transcription constitutes a new level of eukaryotic genome regulation[J]. Embo Reports, 2009, 10(9):973-982.
[11]Liu X, Lyu S, Liu R, et al. Transcriptomic analysis reveals the roles of gibberellin-regulated genes and tran-scription factors in regulating bolting in lettuce (Lactuca sativa L.)[J]. Plos One, 2018, 13(2): e0191518.
[12]Gao C, Wang Y, Liu G, et al. Expression profiling of salinity-alkali stress responses by large-scale expressed sequence tag analysis in Tamar & hispid[J].Plant Molecular Biology, 2008, 66(3): 245-258.
[13]姚敏磊, 张璟曜, 周汐, 等. 大豆响应低磷胁迫的数字基因表达谱分析[J]. 大豆科学, 2016, 35(2): 213-221.(Yao M L, Zhang J Y, Zhou X, et al. The digital gene expression profiling analysis of genes in response to low phosphorus stress in soybean[J]. Soybean Science, 2016, 35(2): 213-221.)
[14]任梦露, 刘卫国, 刘婷, 等. 荫蔽胁迫下大豆茎秆形态建成的转录组分析[J]. 作物学报, 2016, 42(9): 1319-1331. (Ren M L, Liu W G, Liu T, et al. Transcriptome analysis of stem morphogenesis under shade stress in soybean[J]. Acta Automatica Sinica, 2016, 42(9): 1319-1331.)
[15]张晓娜, 朴春兰, 董友魁, 等. 大豆根系应答重金属Cd胁迫的转录组分析[J]. 应用生态学报, 2017, 28(5): 1633-1641. (Zhang X N, Piao C L, Dong Y K, et al. Transcriptome analysis of response to heavy metal Cd stress in soybean root[J]. Chinese Journal of Applied Ecology, 2017, 28(5):1633-1641.)
[16]Liu A, Xiao Z, Li M W, et al.Transcriptomic reprogramming in soybean seedlings under salt stress[J]. Plant Cell & Environment, 2018, 12(12): e0189159.
[17]吴倩, 张磊, 黄志平, 等. 转录组测序及其在野生大豆基因资源发掘中的应用[J]. 大豆科学, 2013, 32(6): 845-851.(Wu Q, Zhang L, Huang Z P, et al. Transcription sequencing and its application on discovering the gene resources of wild soybean[J]. Soybean Science, 2013, 32(6): 845- 851.)
[18]Wei C, Yao Q, Patil G B, et al.Identification and comparative analysis of differential gene expression in soybean leaf tissue under drought and flooding stress revealed by RNA-Seq[J]. Frontiers in Plant Science, 2016, 7: 1044.
[19]Carter T E Jr,de Souza P I, Purcell L C. Recent advances in breeding for drought and aluminum resistance in soybean[C]. Chicago: Proceedings of World Soybean Research Conference VI, 1999: 106-125.
[20]蒲伟凤. 不同类型大豆种质资源抗旱性比较及野生大豆抗旱性筛选[D]. 秦皇岛: 河北科技师范学院, 2010.(Pu W F. Comparison of drought resistance in different soybean types and screening of drought resistance in Glycine soja[D]. Qinhuangdao: Hebei Normal University of Science and Technology, 2010.)
[21]乔亚科, 李桂兰, 高书国, 等. 昌黎沿海野生大豆分布及其耐盐性[J]. 河北职业技术师范学院学报, 2001(2): 9-13.(Qiao Y K , Li G L, Gao S G, et al. Geographical distribution and salt-tolerance of wild soybean(Glycine soja)in inshore regions in Changli Hebei province[J]. Journal of Hebei Vocation-Technical Teachers College, 2001(2): 9- 13.)
[22]王丹,乔亚科,韩粉霞,等. 河北东部沿海地区野生大豆SSR多样性分析[J]. 大豆科学, 2010, 29(4): 555-558. (Wang D, Qiao Y K, Han F X, et al. Diversity of Glycine soja in eastern coastal area of Hebei province[J]. Soybean Science, 2010, 29(4): 555-558.)
[23]Zhang X, Jiang H, Wang H, et al.Transcriptome analysis of rice seedling roots in response to potassium deficiency[J]. Scientific Reports, 2017, 7(1): 5523.
[24]Prince S J, Joshi T, Mutava R N, et al.Comparative analysis of the drought-responsive transcriptome in soybean lines contrasting for canopy wilting[J]. Plant Science, 2015, 240:65-78.
[25]刘洪博, 刘新龙, 苏火生, 等. 干旱胁迫下割手密根系转录组差异表达分析[J].中国农业科学, 2017, 50(6): 1167- 1178.(Liu H B, Liu X L, Su H S, et al. Transcriptome difference analysis of saccharum spontaneum roots in response to drought stress[J]. Scientia Agricultura Sinica, 2017, 50(6): 1167-1178.)
[26]刘振山. 小麦苗期干旱、高温和旱热共胁迫转录表达谱及ABD部分同源基因表达分化分析[D]. 北京: 中国农业大学, 2015.(Liu Z S. Transcriptome profiling and differential homeologous genes expression analysis of wheat (Triticum aestivum L.) seedlings during drought stress, heat stress and their[D]. Beijing: China Agricultural University, 2015.)
[27]Fujita Y, Fujita M, Satoh R, et al. AREB1 is a transcription activator of novel ABRE-dependent ABA signal-ing that enhances drought stress tolerance in Arabidopsis[J]. Plant Cell, 2005, 17(12): 3470-3488.
[28]周宏. 桑树抗旱相关4个转录因子家族鉴定与表达分析[D]. 镇江: 江苏科技大学, 2017. (Zhou H. Identification and expression analysis of drought-resistant related 4 transcription factor families in mulberry (Morus L.)[D]. Zhenjiang: Jiangsu University of Science and Technology, 2017.)
[29]Jiang J J, Ma S H, Ye N H, et al. WRKY transcription factors in plant responses to stresses[J]. Journal of Integrative Plant Biology, 2017, 59(2): 86-101.
[30]Zhou Q Y, Tian A G, Zou H F, et al.Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants[J]. Plant Biotechnology Journal, 2008, 6(5): 486-503.
[31]刘鑫, 邹郁陶, 牟巍, 等. 玉米乙烯应答元件结合蛋白基因启动子克隆与功能验证[J]. 核农学报, 2016, 30(4):629- 637.(Liu X, Zou Y T, Mu W, et al. Cloning and functional validation of promoter of ethylene-responsive element-binding protein gene in maize[J]. Journal of Nuclear Agricultural Sciences,2016, 30(4): 629-637.)
[32]Hu W, Hou X, Huang C, et al.Genome-wide identification and expression analyses of aquaporin gene family during development and abiotic stress in banana[J]. International Journal of Molecular Sciences, 2015, 16(8): 19728-19751.
[33]Guerrero F D, Jones J T, Mullet J E. Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes[J]. Plant Molecular Biology, 1990, 15(1):11.
[34]叶国良, 宋娟娟, 叶清. 两种不同抗旱能力的豇豆根系水通道蛋白基因的克隆与分析[J]. 分子植物育种, 2016, 14(8): 1977-1985. (Ye G L, Song J J, Ye Q. Cloning and analysis of aquaporins in roots of two cow pea (Vigna unguiculata L. Walp.) cultivars with contrasting drought tolerance[J]. Molecular Plant Breeding, 2016,14(8): 1977-1985.)

相似文献/References:

[1]高越,刘辉,陶波.抗草甘膦野生大豆筛选及其抗性生理机制研究[J].大豆科学,2013,32(01):76.[doi:10.3969/j.issn.1000-9841.2013.01.018]
 GAO Yue,LIU Hui,TAO Bo.Screening and Physiological Mechanisms of Resistance to Glyphosate in Wild Soybeans(Glycine soja)[J].Soybean Science,2013,32(05):76.[doi:10.3969/j.issn.1000-9841.2013.01.018]
[2]王军卫,侯立江,李? 登,等.野生大豆紫色酸性磷酸酶PAP1基因的克隆及分析[J].大豆科学,2013,32(05):596.[doi:10.11861/j.issn.1000-9841.2013.05.0596]
 WANG Jun-wei,HOU Li-jiang,LI Deng,et al.Cloning and Sequence Analysis of Purple Acid Phosphotase PAP1 Gene in Wild Soybean[J].Soybean Science,2013,32(05):596.[doi:10.11861/j.issn.1000-9841.2013.05.0596]
[3]王军卫,侯立江,李 登,等. 野生大豆紫色酸性磷酸酶PAP1基因的克隆及分析[J].大豆科学,2013,32(05):596.
 WANG Jun-wei,HOU Li-jiang,LI Deng,et al. Cloning and Sequence Analysis of Purple Acid Phosphotase PAP1 Gene in Wild Soybean[J].Soybean Science,2013,32(05):596.
[4]王丽燕.硅对野生大豆幼苗耐盐性的影响及其机制研究[J].大豆科学,2013,32(05):659.[doi:10.11861/j.issn.1000-9841.2013.05.0659]
 WANG Li-yan.Effects of Silicon on Salt Tolerance of Glycine soja Seedlings and Its Mechanism[J].Soybean Science,2013,32(05):659.[doi:10.11861/j.issn.1000-9841.2013.05.0659]
[5]陈丽丽,王明玖,何丽君,等.野生大豆ISSR体系的优化及其在远缘杂交后代鉴定中的利用[J].大豆科学,2013,32(04):459.[doi:10.11861/j.issn.1000-9841.2013.04.0459]
 CHEN Li-li,WANG Ming-jiu,HE Li-jun,et al.Optimization for ISSR Reaction System of Wild Soybean and Its Utilization in Distant Hybrid Identification[J].Soybean Science,2013,32(05):459.[doi:10.11861/j.issn.1000-9841.2013.04.0459]
[6]郑世英,萧蓓蕾,金桂芳.NaCl胁迫对野生大豆和栽培大豆叶绿素及光合特性的影响[J].大豆科学,2013,32(04):486.[doi:10.11861/j.issn.1000-9841.2013.04.0486]
 ZHENG Shi-ying,XIAO Bei-lei,JIN Gui-fang.Effect of NaCl Stress on Chlorophyll Content and Photosynthetic Characteristics of Glycine soja and Glycine max[J].Soybean Science,2013,32(05):486.[doi:10.11861/j.issn.1000-9841.2013.04.0486]
[7]徐艳平,胡翠美,张文会,等.干旱胁迫对野生大豆幼苗光合作用相关指标的影响[J].大豆科学,2013,32(03):341.[doi:10.11861/j.issn.1000-9841.2013.03.0341]
 XU Yan-ping,HU Cui-mei,ZHANG Wen-hui,et al.Effect of Simulated Drought Stress on Photosynthesis Related Indexes at Seedling Stage of Wild Soybeans[J].Soybean Science,2013,32(05):341.[doi:10.11861/j.issn.1000-9841.2013.03.0341]
[8]胡卫静,何丽君,何劲莉,等.NaCl胁迫对野生与栽培大豆杂交后代株系生理指标的影响[J].大豆科学,2013,32(03):349.[doi:10.11861/j.issn.1000-9841.2013.03.0349]
 HU Wei-jing,HE Li-jun,HE Jin-li,et al.Effects of NaCl Stress on Physiological Characters of Soybean Hybrids from Glycine max × Glycine soja[J].Soybean Science,2013,32(05):349.[doi:10.11861/j.issn.1000-9841.2013.03.0349]
[9]王 旻,梁 玉,王欣欣,等.即墨野生大豆主要成分及其营养价值分析[J].大豆科学,2013,32(03):355.[doi:10.11861/j.issn.1000-9841.2013.03.0355]
 WANG Min,LIANG Yu,WANG Xin-xin,et al.Assessment on Nutritional Compositions and Value of Jimo Wild Soybean[J].Soybean Science,2013,32(05):355.[doi:10.11861/j.issn.1000-9841.2013.03.0355]
[10]程鹏,徐鹏飞,范素杰,等.野生大豆接种大豆疫霉根腐病菌后过氧化物酶(POD)活性变化[J].大豆科学,2013,32(02):197.[doi:10.3969/j.issn.1000-9841.2013.02.013]
 CHENG Peng,XU Peng-fei,FAN Su-jie,et al.Response of POD Activity in Glycine soja ?Inoculated by Phytophthora sojae[J].Soybean Science,2013,32(05):197.[doi:10.3969/j.issn.1000-9841.2013.02.013]

备注/Memo

收稿日期:2018-04-23

基金项目:转基因生物新品种培育科技重大专项(2014ZX0800404B);河北省自然科学基金(C2016407100,C2014407051);河北省研究生创新资助项目(CXZZSS2018148)。
第一作者简介:张小芳(1993-),女,硕士,主要从事植物遗传资源研究及植物分子生物学研究。E-mail:zxf13214@163.com。
通讯作者: 李桂兰(1963-),女,博士,教授,主要从事作物遗传资源及作物基因工程研究。E-mail:lgl63@126.com。

更新日期/Last Update: 2018-10-08