FAN Zhen,MA Kai-ping,JIANG Shun-jie,et al.Influence Factors Analysis and Price Prediction of Soybean in China Based on Improved GM (1, N) Model[J].Soybean Science,2016,35(05):847-852.[doi:10.11861/j.issn.1000-9841.2016.05.0847]
基于改进GM(1,N)模型的我国大豆价格影响因素分析及预测研究
- Title:
- Influence Factors Analysis and Price Prediction of Soybean in China Based on Improved GM (1, N) Model
- Keywords:
- Soybean price; Grey correlation analysis; Grey prediction; GM (1; N)
- 文献标志码:
- A
- 摘要:
- 大豆是我国重要的粮食作物和油料作物,其价格对于国民经济尤其是农业经济的影响意义深远。大豆价格的稳定对于我国大豆市场的健康发展有着重要的现实意义。在灰色理论的基础上,提出了一种改进GM(1,N)大豆价格预测模型,首先运用灰色关联分析法对我国大豆价格的影响因素进行分析,选择主要的影响因素;再将这些影响因素作为模型的相关因素变量,构建GM(1,N)大豆价格预测模型。采用2010-2015年的大豆数据进行实证研究,模型选取国内大豆自给量、世界大豆产量、国民消费价格指数、消费者信心指数4个变量作为相关因素变量;模型预测误差为2.10%,预测精度较高,能够较好地掌握大豆价格的变化规律,可以为大豆价格市场预测及国家宏观政策的制定提供理论指导。
- Abstract:
- Soybean is an important food crop and oil crop in China, and its price has a profound impact on the national economy, especially the agricultural economy. The stability of soybean prices for the healthy development of the soybean market in China has important practical significance. Based on the grey theory, an improved GM (1, N) model is proposed. First, using the gray correlation analysis method to analyze the factors that affect the price of soybean in our country, and select the main factors.Then select these factors as the correlation factors of the model, to build the GM (1, N) model. We used the 2010 to 2015 soybean data for empirical research, and the model selected four variables of the domestic soybean self-sufficiency, world soybean production, the country′s consumer price index, consumer confidence index as a related factor. Model prediction error was 2.10% and the prediction accuracy is higher. It could grasp the change of soybean price better, and provide theoretical guidance for the soybean price market forecast and national macro policy formulation.
参考文献/References:
[1]刘家富,周慧秋,李孝忠国内大豆市场价格波动及其影响因素分析[J].东北农业大学学报(社会科学版),2010,8(4):10-13.(Liu J F, Zhou H Q, Li X Z. Analysis on price fluctuation and affecting factors of soybean in China[J]. Journal of Northeast Agricultural University,2010,8(4):10-13.)
相似文献/References:
[1]刘欢,张冬青.基于分位数回归的国产大豆价格影响因素分析[J].大豆科学,2014,33(05):759.[doi:10.11861/j.issn.1000-9841.2014.05.0759]
LIU Huan,ZHANG Dong-qing.Analysis on Influencing Factors of Domestic Soybean Price Based on Quantile Regression[J].Soybean Science,2014,33(05):759.[doi:10.11861/j.issn.1000-9841.2014.05.0759]
[2]陈昕,周曙东.贸易环境变动对国内外大豆价格传导机制的影响分析[J].大豆科学,2016,35(01):148.[doi:10.11861/j.issn.1000-9841.2016.01.0148]
CHEN Xin,ZHOU Shu-dong.Research of Impact of Trade Environment Change on Domestic and Foreign Soybean Price Transmission System[J].Soybean Science,2016,35(05):148.[doi:10.11861/j.issn.1000-9841.2016.01.0148]
[3]高磊,张冬青,叶方如,等.基于符号回归的国产大豆价格影响因素分析[J].大豆科学,2017,36(05):782.[doi:10.11861/j.issn.1000-9841.2017.05.0782]
GAO Lei,ZHANG Dong-qing,YE Fang-ru,et al.Analysis on Influencing Factors of Domestic Soybean Price Based on Symbolic Regression[J].Soybean Science,2017,36(05):782.[doi:10.11861/j.issn.1000-9841.2017.05.0782]
[4]徐鑫洲,马开平.基于系统动力学的我国大豆价格预测分析[J].大豆科学,2018,37(05):787.[doi:10.11861/j.issn.1000-9841.2018.05.0787]
XU Xin-zhou,MA Kai-ping.Prediction and Analysis of Soybean Price in China Based on System Dynamics[J].Soybean Science,2018,37(05):787.[doi:10.11861/j.issn.1000-9841.2018.05.0787]
备注/Memo
基金项目:国家自然科学基金(71101072, 71301077,71401076);南京农业大学中央高校基本科研业务费人文社会科学基金(SK2016006)。第一作者简介:范震(1990-),男,硕士,主要从事预测与决策、产品市场扩散、农业系统工程等研究。E-mail: 409652452@qq.com。