[2]Dugardeyn J, van der Straeten D. Ethylene: Fine-tuning plant growth and development by stimulation and inhibition of elongation[J].Plant Science, 2008, 175(1-2): 59-70.
[3]Bleecker A B, Estelle M A, Somerville C, et al.Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana[J]. Science, 1988, 241(4869): 1086-1089.
[4]Ecker J R. The ethylene signal transduction pathway in plants[J].Science, 1995, 268(5211): 667-675.
[5]Chang C, Stadler R. Ethylene hormone receptor action in Arabidopsis[J].Bioessays, 2001, 23(7): 619-627.
[6]Ju C L, Yoon G M, Shemansky J M, et al. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(47): 19486-19491.
[7]Qiao H, Shen Z X, Huang S C, et al. Processing and subcellular trafficking of ERtethered EIN2 control response to ethylene gas[J].Science, 2012, 338(6105): 390-393.
[8]Wen X, Zhang C L, Ji Y S, et al. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus[J]. Cell Research, 2012, 22(11): 1613-1616.
[9]Ji Y S, Guo H W. From endoplasmic reticulum (ER) to nucleus: EIN2 bridges the gap in ethylene signaling[J]. Molecular Plant, 2013, 6(1): 11-14.
[10]Ju C, Chang C. Mechanistic insights in ethylene perception and signal transduction[J].Plant Physiology, 2015, 169(1): 85-95.
[11]Li W, Ma M, Feng Y, et al. EIN2-directed translational regulation of ethylene signaling in Arabidopsis[J]. Cell, 2015, 163(3):670-683.
[12]Merchante C, Brumos J, Yun J, et al. Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2[J]. Cell, 2015, 163(3): 684-697.
[13]Lee K H, Larue T A. Exogenous ethylene inhibits nodulation of Pisum SativumL. Cv Sparkle[J].Plant Physiology, 1992b, 100(4): 1759-1763.
[14]Weller J L, Foo E M, Hecht V, et al. Ethylene signaling influences light-regulated development in pea[J]. Plant Physiology, 2015, 169(1): 115-124.
[15]Penmetsa R V, Cook D R. A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont[J].Science, 1997, 275(5299): 527-530.
[16]Penmetsa R V, Uribe P, Anderson J, et al. The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations[J]. Plant Journal, 2008, 55(4): 580-595.
[17]Lohar D, Stiller J, Kam J, et al. Ethylene insensitivity conferred by a mutated Arabidopsis ethylene receptor gene alters nodulation in transgenic Lotus japonicus[J].Annals of Botany, 2009, 104(2): 277-285.
[18]Gresshoff P M, Lohar D, Chan P K, et al.Genetic analysis of ethylene regulation of legume nodulation[J]. Plant Signaling & Behavior, 2009, 4(9): 818-823.
[19]Nukui N, Ezura H, Minamisawa K. Transgenic Lotus japonicus with an ethylene receptor gene Cm-ERS1/H70A-enhances formation of infection threads and nodule primordia[J]. Plant and Cell Physiology, 2004, 45(4): 427-435.
[20]Chan P K, Biswas B, Gresshoff P M. Classical ethylene insensitive mutants of the Arabidopsis EIN2 orthologue lack the expected ‘hypernodulation’ response in Lotus japonicus[J]. Journal of Integrative Plant Biology, 2013, 55(4): 395-408.[21]程云清.乙烯调控对大豆营养生长与生殖生长影响研究[D].大连:大连理工大学, 2009.(Cheng Y Q. Effeets of ethylene regulation on the vegetative and reproductive growth of soybean (Glycine max (L) Merr) [D].Dalian: Dalian University of Technology, 2009.)
[22]Hoffman T, Schmidt J S, Zheng X Y, et al. Isolation of ethyleneinsensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance[J]. Plant Physiology, 1999, 119(3): 935-949.[23]Schmidt J S, Harper J E, Hoffman T K, et al.Regulation of soybean nodulation independent of ethylene signaling[J]. Plant Physiology, 1999, 119(3): 951-959.
[24]Bent A F, Hoffman T K, Schmidt J S, et al. Disease and performance-related traits of ethylene insensitive soybean[J]. Crop Science, 2006, 46(2): 893-901.
[25]沈鸣.大豆乙烯反应突变体基因的鉴定和功能解析[D]. 北京:中国科学院, 2015.(Shen M. Identification and functional analysis of the gene from soybean ethyleneresponse mutant[D]. Beijing: Chinese Academy of Sciences, 2015.)
[26]Delves A C, Mathews A, Day D A, et al. Regulation of the soybean-Rhizobium nodule symbiosis by shoot and root factors[J]. Plant Physiology, 1986, 82(2): 588-590.[27]Reid D E, Ferguson B J, Hayashi S, et al. Molecular mechanisms controlling legume autoregulation of nodulation[J]. Annals of Botany, 2011, 108(5): 789-795.
[28]van Brussel A A N, Tak T, Boot K J M, et al. Autoregulation of root nodule formation: Signals of both symbiotic partners studied in a split-root system of Vicia sativa subsp nigra[J] Molecular Plant-Microbe Interactions, 2002, 15(4): 341-349.
[29]Goodlass G, Smith K A. Effects of ethylene on root extension and nodulation of pea (Pisum sativum L) and white clover (Trifolium repens L)[J].Plant and Soil, 1979, 51: 387-395.
[30]Grobbelaar N, Clarke B, Hough M C. The nodulation and nitrogen fixation of isolated roots of Phaseolus vulgaris L III. The effect of carbon dioxide and ethylene[J]. Plant and Soil(Special Volume), 1971: 215-223.
[31]Caba J M, Poveda J L, Gresshoff P M, et al. Differential sensitivity of nodulation to ethylene in soybean cv Bragg and a supernodulating mutant[J]. New Phytologist, 1999, 142(2): 233- 242
[32]Caba J M, Recalde L, Ligero F.Nitrate-induced ethylene biosynthesis and the control of nodulation in alfalfa[J].Plant Cell and Environment, 1998, 21(1): 87-93.
[33]Guinel F C, Larue T A.Ethylene inhibitors partly restore nodulation to pea mutant E107 (brz)[J].Plant Physiology, 1992, 99(2): 515-518.
[34]Nukui N, Ezura H, Yuhashi K I, et al. Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum[J].Plant and Cell Physiology, 2000, 41(7): 893-897.?
[35]Oldroyd G E D, Engstrom E M, Long S R. Ethylene inhibits the nod factor signal transduction pathway of Medicago truncatula[J].Plant Cell, 2001, 13(8): 1835-1849.
[36]Hunter W J.Ethylene production by root-nodules and effect of ethylene on nodulation in Glycine max[J]. Applied and Environmental Microbiology, 1993, 59(6): 1947-1950.[37]Suganuma N, Yamauchi H, Yamamoto K. Enhanced production of ethylene by soybean roots after inoculation with Bradyrhizobium Japonicum[J].Plant Science, 1995, 111(2): 163-168.
[38]Xie Z P, Staehelin C, Wiemken A, et al. Ethylene responsiveness of soybean cultivars characterized by leaf senescence, chitinase induction and nodulation[J].Journal of Plant Physiology, 1996, 149(6): 690-694
[39]Goormachtig S, Capoen W, James E K, et al.Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(16): 6303-6308.
[40]Larrainzar E, Riely B K, Kim S C, et al.Deep sequencing of the Medicago truncatula root transcriptome reveals a massive and early interaction between nodulation factor and ethylene signals[J]. Plant Physiology, 2015, 169(1): 233-265.
[41]Ma W B, Penrose D M, Glick B R.Strategies used by rhizobia to lower plant ethylene levels and increase nodulation[J]. Canadian Journal of Microbiology, 2002, 48(11): 947-954.
[42]Yuhashi K I, Ichikawa N, Ezura H, et al.Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum[J]. Applied and Environmental Microbiology, 2000, 66(6): 2658-2663.[43]Ma W B, Guinel F C, Glick B R.Rhizobium leguminosarum biovar viciae 1aminocyclo-propane1carboxylate deaminase promotes nodulation of pea plants[J]. Applied and Environmental Microbiology, 2003, 69(8): 4396-4402.
[44]Miyata K, Kawaguchi M, Nakagawa T. Two distinct EIN2 genes cooperatively regulate ethylene signaling in Lotus japonicus[J].Plant and Cell Physiology, 2013, 54(9): 1469-1477.
[45]Wopereis J, Pajuelo E, Dazzo F B, et al.Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype[J]. Plant Journal, 2000, 23(1): 97-114.
[46]Searle I R, Men A E, Laniya T S, et al. Long-distance signaling in nodulation directed by a CLAVATA1like receptor kinase[J] Science, 2003, 299(5603): 109-112
[47]Penmetsa R V, Frugoli J A, Smith L S, et al. Dual genetic pathways controlling nodule number in Medicago truncatula[J]. Plant Physiology, 2003, 131(3): 998-1008.
[48]Clark S E, Williams R W, Meyerowitz E M.The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis[J].Cell, 1997, 89(4): 575-585.
[49]Ferguson B J, Indrasumunar A, Hayashi S, et al.Molecular analysis of legume nodule development and autoregulation[J].Journal of Integrative Plant Biology, 2010, 52(1): 61-76.
[50]Hirsch A M. Developmental biology of legume nodulation[J] New Phytologist, 1992, 122(2): 211-237.
[51]Ferguson B J, Foo E, Ross J J, et al. Relationship between gibberellin, ethylene and nodulation in Pisum sativum[J] New Phytologist, 2011, 189(3): 829-842.
[52]Sun J H, Cardoza V, Mitchell D M, et al.Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation[J].Plant Journal, 2006, 46(6): 961-970.
[53]Asamizu E, Shimoda Y, Kouchi H, et al.A positive regulatory role for LjERF1 in the nodulation process is revealed by systematic analysis of nodule-associated transcription factors of Lotus japonicus[J].Plant Physiology, 2008, 147(4): 2030-2040.
[54]Plet J, Wasson A, Ariel F, et al. MtCRE1dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula[J]. Plant Journal, 2011, 65(4): 622-633.