LIU Li,XING Guang-nan,LI Xu-liang,et al.QTL Mapping for Vining Growth Habit of a Wild Soybean Accession PI342618B[J].Soybean Science,2015,34(06):933-937.[doi:10.11861/j.issn.1000-9841.2015.06.0933]
野生大豆PI342618B蔓生性QTL定位研究
- Title:
- QTL Mapping for Vining Growth Habit of a Wild Soybean Accession PI342618B
- 文献标志码:
- A
- 摘要:
- 蔓生性(vining growth habit,VGH)是野生大豆茎的生长习性,对其遗传规律的研究有助于全面了解大豆株型及驯化特点。以南农86-4×PI342618B种间杂交衍生的重组自交系群体NJRINP的亲本和 286个家系为材料,利用含226个标记的遗传图谱,采用WinQTLCart 2-5软件的复合区间作图法对2013和2014年开花期(R1)和成熟期(R8)蔓生性数据进行了QTL定位分析。结果开花期检测到4个蔓生性QTL,分别位于D1a(Chr.1)、G(Chr.18)和L(Chr.19)连锁群,其中qVGH-D1a 、Qvgh-G-1和qVGH-G-2两年均能检测到;qVGH-G-2两年的贡献率分别达14.16%和14.18%,是控制开花期蔓生性的稳定主效QTL。成熟期蔓生性两年均检测到位于G和L连锁群上的qVGH-G-1和qVGH-L位点,其中qVGH-G-1在开花期和成熟期的表型贡献率相当,是稳定表现的QTL;而qVGH-L由于贡献率大(两年R2分别为39.11%和23.14%),是控制成熟期蔓生性的主效QTL,其可能与结荚习性基因相关。促进蔓生性的等位基因均来自野生大豆PI342618B,但控制开花期和成熟期蔓生性的遗传体系不尽相同。
- Abstract:
- Vining growth habit is the basic characteristics of annual wild soybean. In the present study, 286 lines of a recombinant inbred line population (NJRINP) derived from the cross between Nannong 86-4 and PI342618B were used to conduct field experiments.Vining growth habit was investigated at beginning flowering (R1) and full maturity stage (R8) in 2013 and 2014, respectively. The composite interval mapping (CIM) of the software WinQTLCart 2.5 was used to map QTL with a genetic linkage map of 226 markers. The linkage group D1a(Chromosome 1), G(Chr-18) and L(Chr-19) were found to be related with vining growth habit at R1 stage. The QTL -qVGH-D1a, qVGH-G-1 and qVGH-G-2 was detected during the two years, the QTL qVGH-G-2, which accounted for 14.16% and 14.18% of phenotypic variation, was the major QTL controlling vining growth habit at R1 stage.Two loci qVGH-G-1 and qVGH-L were found for vining growth habit at R8 stage.The qVGH-G-1 on linkage group G had similar contribution of phenotypic variation at both R1 and R8 stages, indicating that the locus was a stable one at whole growth period.The qVGH-L on Linkage group L accounted for 39.11% and 23.14% of phenotypic variation in two years respectively, was considered to be a mojor QTL controlling vining growth habit at R8 stage. It might be related to determinate habit gene Dt1according to its physical position on the chromosome.All positive alleles of vining growth habit are from PI342618B.However, the genetic system of vining growth habit at R1 stage is different from that at R8 stage
参考文献/References:
[1]Andargie M, Pasquet R S, Gowda B S, et al.Construction of a SSR-based genetic map and identification of QTL for domestication traits using recombinant inbred lines from a cross between wild and cultivated cowpea (V.unguiculata (L) Walp.) [J]. Molecular Breeding, 2011, 28(3): 413-420
相似文献/References:
[1]高越,刘辉,陶波.抗草甘膦野生大豆筛选及其抗性生理机制研究[J].大豆科学,2013,32(01):76.[doi:10.3969/j.issn.1000-9841.2013.01.018]
GAO Yue,LIU Hui,TAO Bo.Screening and Physiological Mechanisms of Resistance to Glyphosate in Wild Soybeans(Glycine soja)[J].Soybean Science,2013,32(06):76.[doi:10.3969/j.issn.1000-9841.2013.01.018]
[2]王军卫,侯立江,李? 登,等.野生大豆紫色酸性磷酸酶PAP1基因的克隆及分析[J].大豆科学,2013,32(05):596.[doi:10.11861/j.issn.1000-9841.2013.05.0596]
WANG Jun-wei,HOU Li-jiang,LI Deng,et al.Cloning and Sequence Analysis of Purple Acid Phosphotase PAP1 Gene in Wild Soybean[J].Soybean Science,2013,32(06):596.[doi:10.11861/j.issn.1000-9841.2013.05.0596]
[3]王军卫,侯立江,李 登,等. 野生大豆紫色酸性磷酸酶PAP1基因的克隆及分析[J].大豆科学,2013,32(05):596.
WANG Jun-wei,HOU Li-jiang,LI Deng,et al. Cloning and Sequence Analysis of Purple Acid Phosphotase PAP1 Gene in Wild Soybean[J].Soybean Science,2013,32(06):596.
[4]王丽燕.硅对野生大豆幼苗耐盐性的影响及其机制研究[J].大豆科学,2013,32(05):659.[doi:10.11861/j.issn.1000-9841.2013.05.0659]
WANG Li-yan.Effects of Silicon on Salt Tolerance of Glycine soja Seedlings and Its Mechanism[J].Soybean Science,2013,32(06):659.[doi:10.11861/j.issn.1000-9841.2013.05.0659]
[5]陈丽丽,王明玖,何丽君,等.野生大豆ISSR体系的优化及其在远缘杂交后代鉴定中的利用[J].大豆科学,2013,32(04):459.[doi:10.11861/j.issn.1000-9841.2013.04.0459]
CHEN Li-li,WANG Ming-jiu,HE Li-jun,et al.Optimization for ISSR Reaction System of Wild Soybean and Its Utilization in Distant Hybrid Identification[J].Soybean Science,2013,32(06):459.[doi:10.11861/j.issn.1000-9841.2013.04.0459]
[6]郑世英,萧蓓蕾,金桂芳.NaCl胁迫对野生大豆和栽培大豆叶绿素及光合特性的影响[J].大豆科学,2013,32(04):486.[doi:10.11861/j.issn.1000-9841.2013.04.0486]
ZHENG Shi-ying,XIAO Bei-lei,JIN Gui-fang.Effect of NaCl Stress on Chlorophyll Content and Photosynthetic Characteristics of Glycine soja and Glycine max[J].Soybean Science,2013,32(06):486.[doi:10.11861/j.issn.1000-9841.2013.04.0486]
[7]徐艳平,胡翠美,张文会,等.干旱胁迫对野生大豆幼苗光合作用相关指标的影响[J].大豆科学,2013,32(03):341.[doi:10.11861/j.issn.1000-9841.2013.03.0341]
XU Yan-ping,HU Cui-mei,ZHANG Wen-hui,et al.Effect of Simulated Drought Stress on Photosynthesis Related Indexes at Seedling Stage of Wild Soybeans[J].Soybean Science,2013,32(06):341.[doi:10.11861/j.issn.1000-9841.2013.03.0341]
[8]胡卫静,何丽君,何劲莉,等.NaCl胁迫对野生与栽培大豆杂交后代株系生理指标的影响[J].大豆科学,2013,32(03):349.[doi:10.11861/j.issn.1000-9841.2013.03.0349]
HU Wei-jing,HE Li-jun,HE Jin-li,et al.Effects of NaCl Stress on Physiological Characters of Soybean Hybrids from Glycine max × Glycine soja[J].Soybean Science,2013,32(06):349.[doi:10.11861/j.issn.1000-9841.2013.03.0349]
[9]王 旻,梁 玉,王欣欣,等.即墨野生大豆主要成分及其营养价值分析[J].大豆科学,2013,32(03):355.[doi:10.11861/j.issn.1000-9841.2013.03.0355]
WANG Min,LIANG Yu,WANG Xin-xin,et al.Assessment on Nutritional Compositions and Value of Jimo Wild Soybean[J].Soybean Science,2013,32(06):355.[doi:10.11861/j.issn.1000-9841.2013.03.0355]
[10]程鹏,徐鹏飞,范素杰,等.野生大豆接种大豆疫霉根腐病菌后过氧化物酶(POD)活性变化[J].大豆科学,2013,32(02):197.[doi:10.3969/j.issn.1000-9841.2013.02.013]
CHENG Peng,XU Peng-fei,FAN Su-jie,et al.Response of POD Activity in Glycine soja ?Inoculated by Phytophthora sojae[J].Soybean Science,2013,32(06):197.[doi:10.3969/j.issn.1000-9841.2013.02.013]
备注/Memo
基金项目:国家高技术研究发展计划(“863计划”)(2012AA101106);国家自然科学基金(31271750);国家公益性行业(农业)科研专项经费项目(201203026-4);长江学者和创新团队发展计划(PCSIRT13073);江苏省现代作物生产协同创新中心项目(JCIC-MCP)。