ZHAO Huan-huan,WU Xing,ZHANG Feng,et al.Cloning and Plant Expression Vector Construction of AtLACS9 Gene from Arabidopsis Thaliana[J].Soybean Science,2011,30(02):190-193.[doi:10.11861/j.issn.1000-9841.2011.02.0190]
拟南芥AtLACS9基因的克隆及其植物表达载体构建
- Title:
- Cloning and Plant Expression Vector Construction of AtLACS9 Gene from Arabidopsis Thaliana
- 文章编号:
- 1000-9841(2011)02-0190-04
- 关键词:
- 长链脂酰辅酶A合成酶; 基因克隆; 载体构建
- 分类号:
- S565.1
- 文献标志码:
- A
- 摘要:
- 将大豆种子凝集素基因的启动子(lec)从pBI-lec载体上酶切下来,连接到植物表达载体pCAMBIA3301(p3301)的多克隆位点上,然后运用RT-PCR方法扩增了拟南芥AtLACS9基因的编码区cDNA,并将其克隆到改造后的p3301载体的lec启动子之后,为进一步转化大豆、获得油份含量提高的转基因大豆做准备。结果表明:p3301载体改造成功,命名为p3301-lec;AtLACS9基因的编码区cDNA由2076 bp组成,编码含691个氨基酸残基的蛋白,其种子特异性表达载体p3301-lec-AtLACS9构建成功,可进行后续研究。
- Abstract:
- Triacylglycerol (TAG) is the major form of storage lipid in oilseeds, and acyl-coenzyme A (CoA) and glycerol-3-phosphate are precursors for the synthesis of TAG. The long-chain acyl-CoA synthetases (LACSs) catalyze the synthesis of acyl-CoA molecules and therefore influence TAG content in oilseeds. In this paper, the soybean seed-specific lectin promoter(lec), which was digested with restriction enzymes from vector pBI-lec, was inserted into the multiple cloning site of the plant expression vector pCAMBIA 3301(p3301), and then the complete coding region cDNA of Arabidopsis thaliana LACS9(AtLACS9) gene was amplified by reverse transcription PCR(RT-PCR)and subcloned into the reconstructed vector p3301 downstream of the lec promoter. This work aimed at laying a foundation for future transformation of soybean with the gene and then obtaining transgenic soybean with enhanced oil content. The results showed that the vector p3301 was successully reconstructed by inserting the lec promoter and was named p3301-lec; AtLACS9 had an open reading frame of 2076 bp and the corresponding protein consists of 691 amino acids; the seed-specific expression vector of AtLACS9, namely p3301-lec-AtLACS9, was constructed successfully and could be used in the next experiments.
参考文献/References:
[1]Pollard M, Ohlrogge J. Testing models of fatty acid transfer and lipid synthesis in spinach leaf using in vivo ?oxygen-18 labeling[J]. Plant Physiology, 1999, 121: 1217-1226. [2]Somerville C, Browse J. Plant lipids: metabolism, mutants, and membranes[J]. Science, 1991, 252: 80-87. [3]Schnurr J A, Shockey J M, Boer Gert-Jan de, et al. Fatty acid export from the chloroplast. Molecular characterization of a major plastidial acyl-coenzyme a synthetase from Arabidopsis[J]. Plant Physiology, 2002, 129:1700-1709. [4]Black P N, DiRusso C C. Yeast acyl-CoA synthetases at the crossroads of fatty acid metabolism and regulation[J]. Biochimica et Biophysica Acta, 2007, 1771(3):286-298. [5]Muoio D M, Lewin T M, Wiedmer P, et al. Acyl-CoAs are functionally channeled in liver: potential role of acyl-CoA synthetase[J]. American Journal of Physiology-Endocrinology and Metabolism,2000, 279: E1366-1373. [6]Parkes H A, Preston E, Wilks D, et al. Overexpression of acyl-CoA synthetase-1 increases lipid deposition in hepatic (HepG2) cells and rodent liver in vivo[J]. American Journal of Physiology-Endocrinology and Metabolism,2006, 291: E737-744. [7]White J A, Todd J, Newman T, et al. A new set of Arabidopsis expressed sequence tags from developing seeds. The metabolic pathway from carbohydrates to seed oil[J]. Plant Physiology, 2000, 12:1582-1594. [8]Shockey J M., Fulda M S, Browse J A. Arabidopsis?contains nine long-chain acyl-coenzyme a synthetase genes that participate in fatty acid and glycerolipid metabolism[J]. Plant Physiology, 2002, 129:1710-1722. [9]Hajduch M, Ganapathy A, Stein A J W, et al. Systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database[J]. Plant Physiology, 2005, 137:1397-1419. [10]Vodkin L O, Raikhel N V. Soybean lectin and related proteins in seeds and roots of Le+ and Le- soybean varieties[J]. Plant Physiology, 1986, 81:558-565. [11]Cho M J, Widholm J M, Vodkin L O. Cassettes for seed-specific expression tested in transformed embryogenic cultures of soybean[J]. Plant Molecular Biology Reporter, 1995, 13:255-269. [12]Buenrostro-Nava M T, Ling P P, Finer J J. Comparative analysis of 35S and lectin promoters in transgenic soybean tissue using an automated image acquisition system and image analysis[J]. Plant Cell Reporter, 2006,2 5: 920-926. [13]Ma Q H, Wang X, Wang Z M. Expression of isopentenyl transferase gene controlled by seed-specific lectin promoter in transgenic tobacco influences seed development[J]. Plant Growth Regulation, 2008, 27:68-76.
相似文献/References:
[1]齐海萍,冮洁,胡文忠,等.豆豉纤溶酶基因的克隆及其在枯草杆菌中的表达[J].大豆科学,2012,31(01):159.[doi:10.3969/j.issn.1000-9841.2012.01.037]
QI Hai-ping,GANG jie,HU Wen-zhong,et al.Cloning of Douchi Fibrinolytic Enzyme Gene and Its Expression in Bacillus subtilis[J].Soybean Science,2012,31(02):159.[doi:10.3969/j.issn.1000-9841.2012.01.037]
[2]于莉莉,谭小力,侯文胜.大豆长链脂酰辅酶A合成酶基因GmLACS在酵母中的表达[J].大豆科学,2011,30(05):719.[doi:10.11861/j.issn.1000-9841.2011.05.0719]
YU Li-li,TAN Xiao-li,HOU Wen-sheng.Enzyme Activity Analysis of GmLACS in Saccharomyces Cerevisiae[J].Soybean Science,2011,30(02):719.[doi:10.11861/j.issn.1000-9841.2011.05.0719]
[3]吴 兴,赵欢欢,张 锋,等.拟南芥AtGPAT9基因cDNA的克隆及其转化大豆的研究[J].大豆科学,2012,31(06):878.[doi:10.3969/j.issn.1000-9841.2012.06.004]
WU Xing,ZHAO Huan-huan,ZHANG Feng,et al.Cloning of AtGPAT9 cDNA from Arabidopsis and Its Transformation of Soybean[J].Soybean Science,2012,31(02):878.[doi:10.3969/j.issn.1000-9841.2012.06.004]
[4]胡英考,孟宪萍,李雅轩,等.大豆γ-生育酚甲基转移酶基因的克隆与表达分析[J].大豆科学,2011,30(02):198.[doi:10.11861/j.issn.1000-9841.2011.02.0198]
HU Ying-kao,MENG Xian-ping,LI Ya-xuan,et al.Cloning and Expression Analysis of Glycine max γ-tocopherol Methyltransferase Gene[J].Soybean Science,2011,30(02):198.[doi:10.11861/j.issn.1000-9841.2011.02.0198]
[5]王伟旗,侯文胜.大豆硫氧还蛋白基因的克隆与分析[J].大豆科学,2011,30(03):351.[doi:10.11861/j.issn.1000-9841.2011.03.0351]
WANG Wei-qi,HOU Wen-sheng.Clone and Analysis of Thioredoxin Gene from Soybean (Glycine max L.)[J].Soybean Science,2011,30(02):351.[doi:10.11861/j.issn.1000-9841.2011.03.0351]
[6]林苏霞,王晓梅,刘志刚,等.大豆主要过敏原GlymBd30K的抗原表位区基因的克隆表达、纯化及免疫原性鉴定[J].大豆科学,2010,29(02):186.[doi:10.11861/j.issn.1000-9841.2010.02.0186]
LIN Su-xia,WANG Xiao-mei,LIU Zhi-gang,et al.Cloning and Expression of the Antigenic Epitope of Gly m Bd 30K Protein from Soybean and Purification and Identification of Expressed Product[J].Soybean Science,2010,29(02):186.[doi:10.11861/j.issn.1000-9841.2010.02.0186]
[7]刘宁,刘若淼,马莹,等.中国大豆花叶病毒HC-Pro基因的克隆与序列分析[J].大豆科学,2010,29(04):549.[doi:10.11861/j.issn.1000-9841.2010.04.0549]
LIU Ning,LIU Ruo-miao,MA Ying,et al.Cloning and Sequence Analysis of HC-Pro Gene of Soybean Mosaic Virus[J].Soybean Science,2010,29(02):549.[doi:10.11861/j.issn.1000-9841.2010.04.0549]
[8]胡英考,李雅轩,蔡民华.大豆对羟苯丙酮酸双加氧酶基因的克隆与表达分析[J].大豆科学,2010,29(04):565.[doi:10.11861/j.issn.1000-9841.2010.04.0565]
HU Ying-kao,LI Ya-xuan,CAI Min-hua.Cloning and Expression Analysis of p-hydroxyphenylpyruvic Acid Dioxygenase Gene in Glycine max [J].Soybean Science,2010,29(02):565.[doi:10.11861/j.issn.1000-9841.2010.04.0565]
[9]白晶,张必弦,李新玲,等.C2H2型锌指蛋白基因的克隆与序列分析[J].大豆科学,2009,28(01):21.[doi:10.11861/j.issn.1000-9841.2009.01.0021]
BAI Jing,ZHANG Bi-xian,LI Xin-ling,et al.Cloning and Sequence Analysis of a C2H2 type Zinc Finger Protein Gene from Glycine soja[J].Soybean Science,2009,28(02):21.[doi:10.11861/j.issn.1000-9841.2009.01.0021]
[10]吴凯威,余晓,刘志刚,等.大豆泛变应原profilin基因的克隆、序列分析和表位预测[J].大豆科学,2007,26(01):1.[doi:10.3969/j.issn.1000-9841.2007.01.002]
WU Kai-wei,YU Xiao,LIU Zhi-gang,et al.CLONING, SEQUENCE ANALYSIS AND ANTIGEN EPITOPE PREDICTION OF PANALLERGEN PROFILIN IN SOYBEAN[J].Soybean Science,2007,26(02):1.[doi:10.3969/j.issn.1000-9841.2007.01.002]
备注/Memo
基金项目:转基因生物新品种培育科技重大专项资助项目(2009ZX08004-009B)。