CHEN Feng,PENG Xin,HUA Xiao-mei,et al.Effects of Sulfur-rich Amino Acids Transgenic Soybeans on Soil Organic Elements and Microbial Community Diversity[J].Soybean Science,2012,31(02):250-265.[doi:10.3969/j.issn.1000-9841.2012.02.020]
富含硫氨基酸转基因大豆对根际土壤有机元素含量和微生物群落多样性的影响
- Title:
- Effects of Sulfur-rich Amino Acids Transgenic Soybeans on Soil Organic Elements and Microbial Community Diversity
- 文章编号:
- 1000-9841(2012)02-0259-07
- Keywords:
- Transgenic soybean; Organic element; Biolog; Soil microbes
- 分类号:
- S565.1
- 文献标志码:
- A
- 摘要:
- 为揭示种植富含硫氨基酸的转基因大豆对土壤生态系统的影响,在网室栽培条件下,测定了成熟期根际土的有机元素含量,并利用Biolog ECO/GN/GP/FF系统分析了种植转基因大豆(A组:受体为南农88-1,3个转基因株系为OE-8,OE-7和RNAi-3;B组:受体为N2899,3个转基因株系为Gagal 17-4,Gagal 21-8和Gagal 57)对土壤微生物活性和群落功能多样性的影响。结果表明:种植2组转基因大豆后土壤硫元素与各自受体相比均极显著下降(P<0.01),A组中3个转基因大豆株系的每孔颜色平均变化率(Average well color development,AWCD)表征的土壤微生物活性和McIntosh等多样性指数均低于对照,其中,3个转基因大豆株系根际土革兰氏阴性菌的AWCD值极显著低于对照(P<0.01),革兰氏阳性菌的AWCD值和McIntosh指数均显著低于对照(P<0.05);转基因品系OE-8根际土真菌的McIntosh指数也极显著低于对照(P<0.01)。B组中转基因品系Gaga1 17-4和Gaga1 21-8的革兰氏阳性菌AWCD值显著高于对照,而Gagal 57的革兰氏阳性菌AWCD值显著低于对照(P<0.05)。转基因大豆根际土壤微生物在Biolog生态板上与对照组相比没有显著差异。因此,试验所用转基因大豆能够显著影响土壤革兰氏阴性菌和阳性菌的活性以及革兰氏阳性菌与真菌的群落多样性,且这种影响与受体品种的基因型有关。
- Abstract:
- In this study,the effects of sulfur-rich amino acids transgenic soybeans on soil organic elements and functional diversity of microbial community were investigated to reveal the safety of transgenic soybeans on soil ecology environment.Microorganism community of transgenic soybeans(Group A:three transgenic soybean lines OE-8,OE-7,RNAi-3 and their recipient Nannong 88-1;Group B:three transgenic soybean lines Gagal 17-4,Gagal 21-8,Gagal 57 and their recipient N2899)in mature stage were analyzed by Biolog ECO/GN/GP/FF systems.The results showed that sulfur contents in rhizosphere soil were significantly decreased in the soil of all transgenic soybean lines(P<0.01).There were also differences in activities,community diversities and richness of soil microbial between transgenic soybeans and non-transgenic soybeans.Two groups of soybeans showed different patterns because of their different recipient genotypes.In Group A,average well color developments(AWCDs)and McIntosh indexes of transgenic soybeans were lower than CK1,especially AWCDs of gram-negative bacteria,and AWCDs,McIntosh indexes of gram-positive bacteria.In rhizosphere soil of three transgenic soybeans,AWCDs of gram-negative bacteria were significantly lower than Nannong88-1(P<0.01),and McIntosh index of gram-positive bacteria were significantly lower than Nannong88-1(P<0.05).McIntosh index of fungi in rhizosphere soil of transgenic soybean OE-8 was significantly lower than Nannong88-1(P<0.01).In Group B,AWCDs of gram-positive bacteria of Gagal 17-4 and Gagal 21-8 were significantly higher than N2899,while AWCD of gram-positive bacteria of Gagal 57 was significantly lower than N2899(P<0.05).As for both groups,there were no significant differences in whole microorganisms when we compared AWCDs and indexes of community diversity in Biolog ECO plates.These results suggested that transgenic soybeans in our study could change activities of gram-negative and gram-positive bacteria,community diversities of gram-positive bacteria and fungi,and at the same time depended on the genotypes of recipients.
参考文献/References:
[1]James C.Global Status of Commercialized Biotech/GM Crops:2010.ISAAA Brief No.42.ISAAA:Ithaca,NY. [2]Stefanowicz A.The Biolog plates technique as a tool in ecological studies of microbial communities[J].Polish Journal of Environmental Studies,2006,15(5):669-676. [3]Garland J L,Mills A L.Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization[J].Applied and Environmental Microbiology,1991,57(8):2351-2359. [4]Malosso E,English L,Hopkins D W,et al.Community level physiological profile response to plant residue additions in Antarctic soils[J].Biology and Fertility of Soils,2005,42(1):60-65. [5]董立国,蒋齐,蔡进军,等.基于Biolog-ECO技术不同退耕年限苜蓿地土壤微生物功能多样性分析[J].干旱区研究,2011,28(4):630-637.(Dong L G,Jiang Q,Cai J J,et al.Analysis on functional diversity of edaphon communities in Medicago sativa fields of different growth years based on Biolog-ECO plates[J].Arid Zone Research,2011,28(4):630-637.) [6]Shen R F,Cai H,Gong W H.Transgenic Bt?cotton has no apparent effect on enzymatic activities or functional diversity of microbial communities in rhizosphere soil[J].Plant and Soil,2006,285(1):149-159. [7]魏锋,朱荷琴,肖蕊,等.转Chi+Glu双价基因棉对土壤微生物群落功能多样性的影响[J].农业环境科学学报,2011,30(10):2081-2090.(Wei F,Zhu H Q,Xiao R,et al.Effects of transgenic?Chi+Glu?cotton on functional diversity of soil microbial community[J].Journal of Agro-Environment Science,2011,30(10):2081-2090.) [8]崔红娟,束长龙,宋福平,等.转cry1Ah基因玉米对根际土壤微生物群落结构的影响[J].东北农业大学学报,2011,42(7):30-38.(Cui H J,Su C L,Song F P,et al.Effect of cry1Ah-transgenic maize on community structure of microorganism in rhizosphere soil[J].Journal of Northeast Agricultural University,2011,42(7):30-38.) [9]徐征.农业转基因生物对土壤生态系统功能影响的研究进展[J].中国农学通报,2004,20(4):47-50.(Xu Z.Studies on the effects influenced the function of soil-ecosystem by transgenes[J].Chinese Agricultural Science Bulletin,2004,20(4):47-50.) [10]Angle J S.Release of transgenic plants:biodiversity and population-level considerations[J].Molecular Ecology,1994,3(1):45-50. [11]Icoz I,Saxena D,Andow D A,et al.Microbial populations and enzyme activities in soil in situ under transgenic corn expressing Cry proteins from Bacillus thuringiensis[J].Journal of Environmental Quality,2008,37:647-662. [12]Hart M M,Powell J R,Gulden R H,et al.Detection of transgenic cp4 epsps genes in the soil food web[J].Agronomy for Sustainable Development,2009,29(4):497-501. [13]Lee B,Park J Y,Park K W,et al.Evaluating the persistence of DNA from decomposing transgenic watermelon tissues in the field[J].Journal of Plant Biology,2010,53(5):338-343. [14]Donegan K K,Seidler R J,Doyle J D,et al.A field study with genetically engineered alfalfa inoculated with recombinant Sinorhizobium meliloti:effects on the soil ecosystem[J].Journal of Applied Ecology,1999,36(6):920-936. [15]Hu S,Chapin F S,Firestone M K,et al.Nitrogen limitation of microbial decomposition in a grassland under elevated CO2[J].Nature,2001,409:188-191. [16]Moreau J W,Zierenberg R A,Banfield J F.Diversity of dissimilatory sulfite reductase genes(dsrAB)in a salt marsh impacted by long-term acid mine drainage[J].Applied and Environmental Microbiology,2010,76(14):4819-4828. [17]Zhao Y,Xiao X,Bi D,et al.Effects of sulfur fertilization on soybean root and leaf traits,and soil microbial activity[J].Journal of Plant Nutrition,2008,31(3):473-483.
相似文献/References:
[1]林凡敏,柏锡,樊超,等.转GsGST14耐盐碱基因大豆的农艺性状调查[J].大豆科学,2013,32(01):56.[doi:10.3969/j.issn.1000-9841.2013.01.013]
LIN Fan-min,BAI Xi,FAN Chao,et al.Investigation and Analysis of the Main Agronomic Traits of Different Transgenic Soybean Lines with GsGST14 Gene[J].Soybean Science,2013,32(02):56.[doi:10.3969/j.issn.1000-9841.2013.01.013]
[2]芦春斌,周文,刘标.喂食转基因大豆对子代雄鼠生殖系统的影响[J].大豆科学,2013,32(01):119.[doi:10.3969/j.issn.1000-9841.2013.01.028]
LU Chun-bin,ZHOU Wen,LIU Biao.Effects of Transgenic Soybean on Reproductive System in Male Mice[J].Soybean Science,2013,32(02):119.[doi:10.3969/j.issn.1000-9841.2013.01.028]
[3]王 东,宋 君,叶先林,等.转基因大豆外源基因NOS终止子定量测定的不确定度分析[J].大豆科学,2013,32(05):601.[doi:10.11861/j.issn.1000-9841.2013.05.0601]
WANG Dong,SONG Jun,YE Xian-lin,et al.[J].Soybean Science,2013,32(02):601.[doi:10.11861/j.issn.1000-9841.2013.05.0601]
[4]程 遥.中国大豆种植业发展的思考[J].大豆科学,2013,32(05):711.[doi:10.11861/j.issn.1000-9841.2013.05.0711]
CHENG Yao.Consideration on the Development of China Soybean Industry[J].Soybean Science,2013,32(02):711.[doi:10.11861/j.issn.1000-9841.2013.05.0711]
[5]周 洁,于 崧,王珊珊,等.抗盐碱转基因大豆对根际土壤固氮细菌多样性的影响[J].大豆科学,2013,32(06):801.[doi:10.11861/j.issn.1000-9841.2013.06.0801]
ZHOU Jie,YU Song,WANG Shan-shan,et al.Effects of Salinization Resistance Transgenic Soybeans on Rhizosphere Soil Nitrogen-fixing Bacterial Diversity[J].Soybean Science,2013,32(02):801.[doi:10.11861/j.issn.1000-9841.2013.06.0801]
[6]厉 志,王曙明,刘 佳,等.广适性转bar基因大豆除草剂草丁膦筛选浓度的研究[J].大豆科学,2013,32(06):810.[doi:10.11861/j.issn.1000-9841.2013.06.0810]
LI zhi,WANG Shu-ming,LIU Jia,et al.Study on Screening Concentration of Wide Adaptability Herbicide Resistant? bar Transgenic Soybean[J].Soybean Science,2013,32(02):810.[doi:10.11861/j.issn.1000-9841.2013.06.0810]
[7]何龙凉,胡红东,李小琴,等.防城港口岸进境转基因大豆贸易概况及检验检疫分析[J].大豆科学,2013,32(04):539.[doi:10.11861/j.issn.1000-9841.2013.04.0539]
HE Long-liang,HU Hong-dong,LI Xiao-qin,et al.General Situation of Imported Genetically Modified Soybean in Fangchenggang Port and Its Inspection and Quarantine Analysis[J].Soybean Science,2013,32(02):539.[doi:10.11861/j.issn.1000-9841.2013.04.0539]
[8]周广彪,蔡 颖,陈文婉,等.QuickGene-810型自动核酸提取仪在转基因大豆检测中的应用研究[J].大豆科学,2014,33(03):434.[doi:10.11861/j.issn.1000-9841.2014.03.0434]
ZHOU Guang-biao,CAI Ying,CHEN Wen-wan,et al.Application of Quick Gene810 Automated Nucleic Acid Extraction Instrument on Detection of Genetically Modified Soybean[J].Soybean Science,2014,33(02):434.[doi:10.11861/j.issn.1000-9841.2014.03.0434]
[9]张彬彬,李永光,盖江南,等.转TaDREB3基因大豆基因漂流距离及频率的研究[J].大豆科学,2011,30(04):563.[doi:10.11861/j.issn.1000-9841.2011.04.0563]
ZHANG Bin-bin,LI Yong-guang,GAI Jiang-nan,et al.Distance and Frequency of Gene Flow in Transgenic Soybean Overexpressing TaDREB3[J].Soybean Science,2011,30(02):563.[doi:10.11861/j.issn.1000-9841.2011.04.0563]
[10]陈晟,郭丽琼,宋景深,等.T5代γ-亚麻酸转基因大豆的遗传稳定性分析[J].大豆科学,2012,31(01):24.[doi:10.3969/j.issn.1000-9841.2012.01.006]
CHEN Sheng,GUO Li-qiong,SONG Jing-shen,et al.Genetic Stability Analysis of the Fifth Generation of Transgenic Soybeans Expressing γ-linolenic Acid[J].Soybean Science,2012,31(02):24.[doi:10.3969/j.issn.1000-9841.2012.01.006]
备注/Memo
基金项目:国家重大专项(2011ZX08011-003);国家自然科学基金(30971871, 40771107);教育部创新团队项目(IRT1020);教育部高校科技创新工程重大项目培育资金(707027)。