LIU Wei,YANG Fang,LI Li-hua,et al.Detection of Transgenic Components in Transgenic Soybean by Droplet Digital PCR[J].Soybean Science,2022,41(04):448-454.[doi:10.11861/j.issn.1000-9841.2022.04.0448]
大豆中转基因成分微滴式数字PCR检测方法研究
- Title:
- Detection of Transgenic Components in Transgenic Soybean by Droplet Digital PCR
- 文献标志码:
- A
- 摘要:
- 为了探讨转基因大豆品系及其衍生产品鉴定的高效技术手段,本研究建立了转基因大豆的微滴式数字PCR(ddPCR)筛选检测方法。利用3种方法提取大豆基因组DNA,分析提取方法和保存时间对微ddPCR检测拷贝数的影响。同时,应用特异性引物,以4种转基因大豆筛选靶标元件为扩增靶标,对微滴式数字PCR检测方法进行体系优化、灵敏度测试和准确度验证。结果表明:使用Promega植物基因组DNA提取试剂盒,提取的DNA对转基因作物的外源拷贝数进行鉴定的结果更为准确可靠。与荧光定量筛选方法相比,ddPCR方法更加灵敏和准确。检测体系的最适探针浓度为100 nmol?L-1,最佳退火温度为58 ℃。以4种靶标元件CaMV35S启动子、T-NOS终止子、pat基因和T-E9终止子开展ddPCR检测,检测灵敏度较高,准确性较好。转基因大豆含量为1%时对CaMV35S和T-NOS靶标参数的绝对检测限为2个拷贝,pat为5个拷贝,T-E9为10个拷贝。本研究建立的ddPCR检测方法可用于大豆转化体的定量检测。
- Abstract:
- In order to explore the efficient technical means of identification in transgenic soybean and their derivatives, a droplet digital PCR(ddPCR) screening method was established in this study.We used soybean genomic DNA extracted by three methods to study the effects of extraction quality and preservation time on the copy number identification results of ddPCR.And we carried out the system optimization, sensitivity test and accuracy verification of the ddPCR method by applying four target elements of transgenic soybean as amplification targets. The results showed that it is more accurate and reliable to identify the foreign copy number of transgenic crops by using the DNA extracted from Promega plant genome DNA extraction kit. Compared with fluorescence quantitative screening, ddPCR was more sensitive and accurate. The optimum concentration of probe was 100 nmol?L-1 and the optimum annealing temperature was 58 ℃. Four target elements, CaMV35S promoter, T-NOS terminator, pat gene and T-E9 terminator, were detected by ddPCR with high sensitivity and accuracy. The absolute limit of detection(LOD) for CaMV35S and T-NOS target parameters was two copies, five copies for pat and ten copies for T-E9 when the content of transgenic soybean was 1%. The ddPCR method established in this study can be used for quantitative detection of soybean transformants.
参考文献/References:
[1]国际农业生物技术应用服务组织. 2019年全球生物技术/转基因作物商业化发展态势[J]. 中国生物工程杂志, 2021, 41(1): 114-119. (International Agriculture Biotechnology Application Service Organizition. 2019 global biotechnology/GM commercialization development trend[J]. Chinese Journal of Bioengineering, 2021, 41(1): 114-119.)[2]斯能武, 李俊, 武玉花, 等. 数字PCR在转基因定量检测中的研究进展[J].中国油料作物学报, 2021, 43(1): 40-50. (SI N W, LI J, WU Y H, et al. Research progress of digital PCR in quantitative detection of genetically modified organism[J]. Chinese Journal of Oil Crops, 2021, 43(1): 40-50.)[3]刘晓, 朱鹏宇, 景小艳, 等. 双重数字PCR在转基因大豆检测中的应用[J].生物技术进展, 2020,10(1): 60-66. (LIU X, ZHU P Y, JING X Y, et al. Application of duplex droplet digital PCR for detection of genetically modified soybean[J]. Advances in Biotechnology, 2020,10(1): 60-66.)[4]梁文, 杨镇州, 李妍, 等. 转基因玉米 MON89034、MON810、MIR162 双重数字 PCR 定量方法的建立[J]. 中国测试, 2019, 45(6): 70-76. (LIANG W, YANG Z Z, LI Y, et al. A quantitative method for genetically modified maize event MON89034, MON810, MIR162 using duplex digital PCR[J]. The Chinese Test, 2019, 45(6): 70-76.)[5]潘广, 章桂明, 刘新娇, 等. 我国转基因成分检测标准现状及分析[J].植物检疫, 2020, 34(6): 5-7. (PAN G, ZHANG G M, LIU X J, et al. The current status and analysis of detection standards for genetically modified ingredients in China[J]. Plant Quarantine, 2020, 34(6): 5-7.)[6]DEMEKE T, DOBNIK D. Critical assessment of digital PCR for the detection and quantification of genetically modified organisms[J]. Analytical and Bioanalytical Chemistry, 2018, 410(17): 4039-4050.[7]张秀杰, 李俊, 王颢潜, 等. 转基因玉米MON87427/zSSIIb二重微滴数字PCR方法建立及应用[J]. 中国油料作物学报, 2021,43(1): 90-98. (ZHANG X J, LI J, WANG H Q, et al. Development and application of MON87427/zSSIIb duplex droplet digital PCR method[J]. Chinese Journal of Oil Crops, 2021,43(1): 90-98.)[8]李夏莹, 肖晓琳, 单露英, 等. 转基因大豆MON87751基体标准物质的定值[J]. 植物检疫, 2020,34(6): 67-71. (LI X Y, XIAO X L, SHANG L, et al. Characterization fixed value of genetically modified MON87751 soybean matrix reference material[J]. Plant Quarantine, 2020, 34 (6): 67-71.)[9]KOSIR〖KG(0.8mm〗 A B, SPILSBERG B, HOLST-JENSEN A, et al.Development and inter-laboratory assessment of droplet digital PCR assays for multiplex quantification of 15 genetically modified soybean lines[J]. Scierce Report, 2017,7(1): 8601.[10]缪青梅, 汪小福, 陈笑芸,等.基于双重微滴数字PCR精准定量转基因水稻G6H1的方法研究[J].农业生物技术学报, 2019, 27(1): 159-169. (LIAO Q M, WANG X F, CHEN X Y, et al. Study on accurate quantitative method of transgenic rice G6H1 based on duplex droplet digital PCR[J].Journal of Agricultural Biotechnology, 2019, 27(1): 159-169.)[11]European Network of GMO Laboratories. Definition of minimum performance requirements for analytical methods of GMO testing[S]. European Commission,2019.[2015-10-20].[12]GRYSON N, MESSENS K, DEWETTINCK K. Evaluation and optimisation of five different extraction methods for soy DNA in chocolate and biscuits. Extraction of DNA as a first step in GMO analysis[J]. Journal of the Science of Food and Agriculture, 2004,84(11): 1357-1363.[13]HOLST-JENSEN A, RONNING S B, LOVSETH A, et al. PCR technology for screening and quantification of genetically modified organisms (GMOs) [J].Analytical and Bioanalytical Chemistry, 2003,375(8): 985-993.[14]DEBODE F, JANSSEN E, BERBEN G. Development of 10 new screening PCR assays for GMO detection targeting promoters (pFMV, pNOS, pSSuAra, pTA29, pUbi, pRice actin) and terminators (t35S, tE9, tOCS, tg7)[J]. European Food Research and Technology, 2013, 236 (4): 659-669.[15]KURIBARA H, SHINDO Y, MATSUOKA T, et al. Novel reference molecules for quantitation of genetically modified maize and soybean[J]. Food Composition and Additives, 2002, 85(5): 1077-1089. [16]COTTENET G, BLANCPAIN C, CHUAH P F. Performance assessment of digital PCR for the quantification of GM-maize and GM-soya events[J]. Analytical and Bioanalytical Chemistry, 2019, 411(11): 2461-2469.[17]安娜, 柳方方, 董美, 等. 基于PCR技术的DNA分析测试关键要素[J]. 基因组学与应用生物学, 2019, 38(2): 624-629. (AN N, LIU F F, DONG M, et al. Key elements of DNA analysis based on PCR technology[J]. Genomics and Applied Biology, 2019, 38(2): 624-629.)[18]FU W, ZHU P, WANG C, et al. A highly sensitive and specific method for the screening detection of genetically modified organisms based on digital PCR without pretreatment[J]. Scientific Reports, 2015, 5: 12715.[19]史宗勇,刘璇,许冬梅,等.基于多靶标质粒分子的转基因大豆快速筛查方案(英文)[J].中国生物化学与分子生物学报,2021,37(11): 1540-1554. (SHI Z Y, LIU X, XU D M, et al. A rapid protocol for screening genetically modified soybean based on positive plasmid molecule containing multiple targets[J]. Chinese Journal of Biochemistry and Molecular Biology, 2021, 37(11): 1540-1554.
相似文献/References:
[1]林凡敏,柏锡,樊超,等.转GsGST14耐盐碱基因大豆的农艺性状调查[J].大豆科学,2013,32(01):56.[doi:10.3969/j.issn.1000-9841.2013.01.013]
LIN Fan-min,BAI Xi,FAN Chao,et al.Investigation and Analysis of the Main Agronomic Traits of Different Transgenic Soybean Lines with GsGST14 Gene[J].Soybean Science,2013,32(04):56.[doi:10.3969/j.issn.1000-9841.2013.01.013]
[2]芦春斌,周文,刘标.喂食转基因大豆对子代雄鼠生殖系统的影响[J].大豆科学,2013,32(01):119.[doi:10.3969/j.issn.1000-9841.2013.01.028]
LU Chun-bin,ZHOU Wen,LIU Biao.Effects of Transgenic Soybean on Reproductive System in Male Mice[J].Soybean Science,2013,32(04):119.[doi:10.3969/j.issn.1000-9841.2013.01.028]
[3]王 东,宋 君,叶先林,等.转基因大豆外源基因NOS终止子定量测定的不确定度分析[J].大豆科学,2013,32(05):601.[doi:10.11861/j.issn.1000-9841.2013.05.0601]
WANG Dong,SONG Jun,YE Xian-lin,et al.[J].Soybean Science,2013,32(04):601.[doi:10.11861/j.issn.1000-9841.2013.05.0601]
[4]程 遥.中国大豆种植业发展的思考[J].大豆科学,2013,32(05):711.[doi:10.11861/j.issn.1000-9841.2013.05.0711]
CHENG Yao.Consideration on the Development of China Soybean Industry[J].Soybean Science,2013,32(04):711.[doi:10.11861/j.issn.1000-9841.2013.05.0711]
[5]周 洁,于 崧,王珊珊,等.抗盐碱转基因大豆对根际土壤固氮细菌多样性的影响[J].大豆科学,2013,32(06):801.[doi:10.11861/j.issn.1000-9841.2013.06.0801]
ZHOU Jie,YU Song,WANG Shan-shan,et al.Effects of Salinization Resistance Transgenic Soybeans on Rhizosphere Soil Nitrogen-fixing Bacterial Diversity[J].Soybean Science,2013,32(04):801.[doi:10.11861/j.issn.1000-9841.2013.06.0801]
[6]厉 志,王曙明,刘 佳,等.广适性转bar基因大豆除草剂草丁膦筛选浓度的研究[J].大豆科学,2013,32(06):810.[doi:10.11861/j.issn.1000-9841.2013.06.0810]
LI zhi,WANG Shu-ming,LIU Jia,et al.Study on Screening Concentration of Wide Adaptability Herbicide Resistant? bar Transgenic Soybean[J].Soybean Science,2013,32(04):810.[doi:10.11861/j.issn.1000-9841.2013.06.0810]
[7]何龙凉,胡红东,李小琴,等.防城港口岸进境转基因大豆贸易概况及检验检疫分析[J].大豆科学,2013,32(04):539.[doi:10.11861/j.issn.1000-9841.2013.04.0539]
HE Long-liang,HU Hong-dong,LI Xiao-qin,et al.General Situation of Imported Genetically Modified Soybean in Fangchenggang Port and Its Inspection and Quarantine Analysis[J].Soybean Science,2013,32(04):539.[doi:10.11861/j.issn.1000-9841.2013.04.0539]
[8]周广彪,蔡 颖,陈文婉,等.QuickGene-810型自动核酸提取仪在转基因大豆检测中的应用研究[J].大豆科学,2014,33(03):434.[doi:10.11861/j.issn.1000-9841.2014.03.0434]
ZHOU Guang-biao,CAI Ying,CHEN Wen-wan,et al.Application of Quick Gene810 Automated Nucleic Acid Extraction Instrument on Detection of Genetically Modified Soybean[J].Soybean Science,2014,33(04):434.[doi:10.11861/j.issn.1000-9841.2014.03.0434]
[9]张彬彬,李永光,盖江南,等.转TaDREB3基因大豆基因漂流距离及频率的研究[J].大豆科学,2011,30(04):563.[doi:10.11861/j.issn.1000-9841.2011.04.0563]
ZHANG Bin-bin,LI Yong-guang,GAI Jiang-nan,et al.Distance and Frequency of Gene Flow in Transgenic Soybean Overexpressing TaDREB3[J].Soybean Science,2011,30(04):563.[doi:10.11861/j.issn.1000-9841.2011.04.0563]
[10]陈晟,郭丽琼,宋景深,等.T5代γ-亚麻酸转基因大豆的遗传稳定性分析[J].大豆科学,2012,31(01):24.[doi:10.3969/j.issn.1000-9841.2012.01.006]
CHEN Sheng,GUO Li-qiong,SONG Jing-shen,et al.Genetic Stability Analysis of the Fifth Generation of Transgenic Soybeans Expressing γ-linolenic Acid[J].Soybean Science,2012,31(04):24.[doi:10.3969/j.issn.1000-9841.2012.01.006]
备注/Memo
收稿日期:2021-11-15