WAN Hui-na,YU Yue-hua,WANG Yi,et al.Bioinformatics and Expression Analysis of GmNAC131 Gene in Soybean[J].Soybean Science,2021,40(02):232-240.[doi:10.11861/j.issn.1000-9841.2021.02.0232]
侵蚀黑土玉米和大豆根部伴生细菌群落结构分析
- Title:
- Bioinformatics and Expression Analysis of GmNAC131 Gene in Soybean
- Keywords:
- Soybean; GmNAC131 gene; NAC transcription factor; Abiotic stress
- 文献标志码:
- A
- 摘要:
- 为分析东北侵蚀黑土中大豆和玉米根部伴生细菌群落结构多样性,促进土壤侵蚀过程中其根部伴生细菌群落结构响应规律的研究,本研究结合LNA-PCR技术和高通量测序方法,模拟东北黑土侵蚀土壤,分析玉米播种期和抽穗期、大豆开花期根部细菌群落结构多样性和差异。结果表明:土壤表层剥离后大豆根部细菌群落多样性降低,而玉米根部细菌群落多样性变化不显著。变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、拟杆菌门(Bacteroidetes)和厚壁菌门(Firmicutes)为大豆和玉米根部伴生细菌共有的优势菌门。属水平上,Acinetobacter、Rhodanobacter、Steroidobacter和Dyella主要在玉米根部获得,而Bacillus、Arenimonas、Variovorax、Propionibacterium、g__norank_p__和Candidate_division_TM7主要在大豆根部发现。本研究首次发现Candidate division TM7也是植物伴生细菌的成员,其序列主要划分为α、β和γ 3个簇,有97.5%的序列属于α簇。研究证实了植物根部伴生细菌群落结构不仅具有宿主特异性,且易受土壤侵蚀影响。
- Abstract:
- NAC genes have the resistant function to the biological and abiotic stress in many crops. In order to explore the function in soybean, this study cloned a NAC gene GmNAC131 from Williams 82 and analyzed the characteristics of the gene and its coding protein sequence, the protein structure and function, and the expression level of the gene in different tissues by bioinformatics. We analyzed the induced expression of abiotic stress at different time periods by fluorescence quantitative. The cDNA length of GmNAC131 was 1 945 bp, and the open reading frame (ORF) was 1 053 bp. GmNAC131 encoded 350 amino acids, with a molecular weight of 39.49 ku and an isoelectric point of 7.62, contained 3 exons and 2 introns. GmNAC131 contained a highly conserved NAC domain at amino acids from 16 to 166. There was no signal peptide, no transmembrane structure, and the protein composition was hydrophobic. GmNAC131 was located in the nucleus with 8 glycosylation sites and 34 phosphorylation sites. GmNAC131 had a high similarity with NAC proteins of Glycine soja, Vigna unguiculata, Mucuna pruriens, and Cajanus cajan, and shared the same branch with GsNAC. Transcriptome data showed that GmNAC131 gene was expressed in different tissues of soybean, with the highest expression in root and the lowest expression in leaf. The expression of GmNAC131 gene fluctuated during 24 h of low temperature stress at 4 ℃, the expression peaked at 12 h under 250 mmol?L-1 NACL stress, reached its maximum at 0.5 h under 30% PEG6000 stress and reached its maximum at 6 h under 100 mol?L-1 ABA stress.It suggested that the gene might be involved in abiotic stresses such as salt tolerance and drought tolerance in soybean.
参考文献/References:
[1]康桂娟, 曾日中, 聂智毅, 等. 巴西橡胶树NAC转录因子HbNAC1基因的克隆及生物信息学分析[J]. 中国农学通报, 2012, 28(34): 1-11. (Kang G J, Zeng R Z, Nie Z Y, et al. Cloning and bioinformatics analysis of the gene of NAC transcription factor HbNAC1 in Brazilian rubber tree[J]. Chinese Agricultural Science Bulletin, 2012, 28(34):1-11.) [2]Nuruzzaman M, Manimekalai R, Sharoni A M, et al. Genome-wide analysis of NAC transcription factor family in rice[J]. Gene, 2010, 465(1-2):30-44. [3]Yoshii M, Yamazaki M, Rakwal R, et al. The NAC transcription factor RIM1 of rice is a new regulator of jasmonate signaling[J]. Plant Journal, 2010, 61(5):804-815.[4]Tran L S P, Quach T N, Guttikonda S K, et al. Molecular characterization of stress-inducible GmNAC genes in soybean[J]. Molecular Genetics and Genomics, 2009, 281(6):647-664.[5]Ernst H A, Olsen A N, Skriver K, et al. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors[J]. Embo Reports, 5(2):297-303.[6]Puranik S, Sahu P P, Srivastava P S, et al. NAC proteins: Regulation and role in stress tolerance[J]. Trends in Plant Science, 2012, 17(6):369-381. [7]Nakashima K, Takasaki H, Mizoi J, et al. NAC transcription factors in plant abiotic stress responses[J]. Biochimica et Biophysica Acta Gene Regulatory Mechanisms, 2012, 1819(2):97-103.[8]Schulz P, Romeis H T. Calcium-dependent protein kinases: Hubs in plant stress signaling and development[J]. Plant Physiology, 2013, 163(2):523-530.[9]王永鑫, 刘志薇, 吴致君, 等. 茶树中2个NAC转录因子基因的克隆及温度胁迫的响应[J]. 西北植物学报, 2015, 35(11):14-22.(Wang Y X, Liu Z W, Wu Z J, et al. Cloning of two NAC transcription factor genes in tea plants and response to temperature stress [J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(11): 14-22.)[10]Hu H, Dai M, Yao J, et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proceedings of the National Academy of Sciences, 2006, 103(35):12987-12992.[11]王凤涛, 蔺瑞明, 徐世昌. 小麦3个NAC转录因子基因克隆与功能分析[J]. 基因组学与应用生物学, 2010, 4(6):37-43. (Wang F T, Liu R M, Xu S C. Cloning and functional analysis of three NAC transcription factor genes in wheat [J]. Genomics and Applied Biology, 2010, 4(6): 37-43.)[12]张娟. 基因枪法介导的OsNACl、GAFP和ThpI基因转化小麦的研究[D]. 江苏:扬州大学, 2012. (Zhang J. Study on gene markers-mediated transformation of OsNACl, GAFP and ThpI genes in wheat [D]. Jiangsu: Yangzhou university, 2012.) [13]孙玉燕, 范敏, 何艳军. 西瓜NAC转录因子全基因组鉴定及其对黄瓜绿斑驳花叶病毒的胁迫应答[C]. 青岛:中国园艺学会2018年学术年会, 2018. (Sun Y Y, Fan M, He Y J. Genome-wide identification of watermelon NAC transcription factor and its stress response to cucumber green mottled mosaic virus[C]. Qingdao: The 2018 annual conference of Chinese Society for Horticultural Science, 2018.) [14]李伟, 韩蕾, 钱永强, 等. 植物NAC转录因子的种类、特征及功能[J]. 应用与环境生物学报, 2011, 17(4): 596-606. (Li W, Han L, Qian Y Q, et al.Types, characteristics and functions of plant NAC transcription factors [J]. Chinese Journal of Applied & Environmental Biology, 2011, 17(4): 596-606.)[15]张进艳, 陈芳, 李亮, 等. 水分胁迫下16个玉米NAC转录因子的序列特征和表达分析[J].山西农业科学, 2014, 42(4):307-312. (Zhang J Y, Chen F, Li L, et al. Sequence characteristics and expression analysis of 16 NAC transcription factors in maize under water stress [J]. Journal of Shanxi Agricultural Sciences, 2014, 42(4): 307-312.)[16]Nakashima K, Tran L S P, Nguyen D V, et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice[J]. Plant Journal, 2007, 51(4):617-630.[17]Mao H, Wang H, Liu S, et al. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings[J]. Nature Communications, 2015, 6:8326.[18]Melo B P, Fraga O T, Silva J C F, et al. Revisiting the soybean GmNAC superfamily[J]. Frontiers in Plant Science, 2018, 9: 01864.[19]Hao Y J, Wei W, Song Q X, et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants[J]. Plant Journal, 2011, 68(2): 302-313.[20]Shuo L, Nan W, Dandan J, et al. A GmSIN1/GmNCED3s/GmRbohBs feed-forward loop acts as a signal amplifier that regulates root growth in soybean exposed to salt stress[J]. The Plant Cell, 2019, 31: 2107-2130.[21]Sanjari S, Shirzadian-Khorramabad R, Shobbar Z, et al. Systematic analysis of NAC transcription factors′ gene family and identification of post-flowering drought stress responsive members in sorghum[J]. Plant Cell Reports, 2019.[22]Sun L J, Zhang H J, Li D Y, et al. Functions of rice NAC transcriptional factors, ONAC122 and ONAC131, in defense responses against Magnaporthe grisea[J]. Plant Molecular Biology, 2013, 81(1-2):41-56.[23]黄磊. 水稻NAC转录因子ONAC131、MNAC1和ONAC095在抗病抗逆中的功能研究[D]. 杭州: 浙江大学, 2015. (Huang L. Functional study of NAC transcription factors ONAC131, MNAC1 and ONAC095 in rice against disease resistance [D]. Hangzhou: Zhejiang University, 2015.)[24]王萍, 于月华, 白玉翠,等. 大豆GmNAC23基因的克隆及特征分析[J]. 华北农学报, 2019, 34(1):50-57. (Wang P, Yu Y H, Bai Y C, et al. Cloning and characterization of GmNAC23 gene from soybean [J].Acta Agriculturae Boreali-Sinica, 2019, 34(1):50-57.)[25]倪志勇, 于月华, 陈全家, 等. 大豆GmNAC115基因克隆及特征分析[J]. 大豆科学, 2016, 35(5):754-759. (Ni Z Y, Yu Y H, Chen Q J, et al. Cloning and characterization of soybean GmNAC115 gene [J]. Soybean Science, 2016, 35(5): 754-759.)[26]Meng Q C, Zhang C H, Gai J Y, et al. Molecular cloning, sequence characterization and tissue-specific expression of six NAC-like genes in soybean [Glycine max (L.) Merr.][J]. Journal of Plant Physiology, 2007, 164(8): 1002-1012.[27]He Z, Jinpu J, Liang T, et al. Plant TFDB 2.0: Update and improvement of the comprehensive plant transcription factor database[J]. Nucleic Acids Research, 2011, 39(1): 1114-1117. [28]叶强, 金晓琴, 刘伟娜, 等. 植物蛋白质N-糖基化修饰研究进展[J]. 浙江师范大学学报(自然科学版), 2016, 121(1):86-92. (Ye Q, Jin X Q, Liu W N, et al. Advances in nglycosylation modification of plant proteins [J]. Journal of Zhejiang Normal University (Natural Sciences), 2016, 121(1): 86-92.)[29]王志凤. 小黑杨花芽和叶芽糖基化蛋白质组学研究[D]. 哈尔滨: 东北林业大学, 2014. (Wang Z F. Glycosylated proteomics of small black poplar flower bud and leaf bud [D]. Harbin: Northeast Forestry University, 2014.)[30]王洋, 崔继哲, 周静, 等. 植物表达重组蛋白的N-糖基化研究进展[J]. 中国农学通报, 2005, 21(10): 174-179. (Wang Y, Cui J Z, Zhou J, et al. Advances in N-glycosylation of plant expressed recombinant proteins[J]. Chinese Agricultural Science Bulletin, 2005, 21(10): 174-179.)[31]陈婕妤. 水稻磷酸盐转运体PHT1家族翻译后调控的分子机制研究[D]. 杭州:浙江大学, 2013. (Chen J Y. Molecular mechanism of post-translational regulation of rice phosphate transporter PHT1 family [D]. Hangzhou: Zhejiang University, 2013.)[32]甄艳, 李春映, 陆叶, 等. 植物磷酸化蛋白质组研究进展[J]. 基因组学与应用生物学, 2014, 56(6):245-254. (Zhen Y, Li C Y, Lu Y, et al. Advances in the study of plant phosphorylated proteome [J]. Genomics and Applied Biology, 2014, 56(6): 245-254.)[33]许治永. ATP/GTP结合和磷酸化修饰对于LjCYC蛋白调控百脉根两侧对称花型的发育至关重要[D]. 北京:中国科学院大学; 上海:中国科学院上海生命科学研究院; 上海:植物生理与生态研究所, 2014. (Xu Z Y. ATP/GTP binding and phosphorylation are crucial for the regulation of the development of bilateral symmetrical flower patterns of LjCYC [D]. Beijing: University of Chinese academy of sciences; Shanghai: Shanghai Institutes for Biological Sciences; Shanghai:Science of Plant Physiology and Ecology, 2014.)[34]申玉华, 徐振军, 杨晓坡, 等. 紫花苜蓿NAC转录因子MsNAC1基因的克隆、生物信息学分析及非生物逆境胁迫下的表达分析[J]. 植物遗传资源学报, 2014, 15(6): 1312-1319. (Shen Y H, Xu Z J, Yang X P, et al. Cloning, bioinformatics analysis and expression analysis of NAC transcription factor MsNAC1 gene in alfalfa under abiotic stress [J]. Journal of Plant Genetic Resources, 2014, 15(6): 1312-1319.) [35]Shanaz P, Sudip B, Samsad R, et al. Salinity and drought tolerance conferred by in planta transformation of SNAC1 transcription factor into a high-yielding rice variety of Bangladesh[J]. Acta Physiol Plant, 2015, 37(4): 68.[36]You J, Zong W, Hu H, et al. A SNAC1-regulated protein phosphatase gene OsPP18 modulates drought and oxidative stress tolerance through ABA-independent reactive oxygen species scavenging in rice[J]. Plant Physiology, 2014, 166:2100-2114.[37]Jun Y, Wei Z, Xiaokai L, et al. The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice[J]. Journal of Experimental Botany, 2013, 64(2): 569-583.[38]Nguyen C N, Xuan L T H, Quang T N, et al. Ectopic Expression of Glycine max GmNAC109 enhances drought tolerance and ABA sensitivity in Arabidopsis[J]. Biomolecules, 2019, 9: 714-729.
相似文献/References:
[1]袁鑫,王梦亮,王俊红.一种生物刺激素对大豆根际土壤微生物群落的影响[J].大豆科学,2017,36(05):751.[doi:10.11861/j.issn.1000-9841.2017.05.0751]
YUAN Xin,WANG Meng-liang,WANG Jun-hong.Effect of A Kind of Biological Stimulant on Microbial Community in Rhizosphere Soil of Soybean[J].Soybean Science,2017,36(02):751.[doi:10.11861/j.issn.1000-9841.2017.05.0751]
[2]接伟光,杨冬莹,姚延轩,等.正茬与迎茬对大豆根际土壤微生物群落组成的影响[J].大豆科学,2022,41(02):179.[doi:10.11861/j.issn.1000-9841.2022.02.0179]
JIE Wei-guang,YANG Dong-ying,YAO Yan-xuan,et al.Effects of Rotational Cropping and Alternate Cropping on Microbial Communities Composition in the Rhizosphere Soil of Soybean[J].Soybean Science,2022,41(02):179.[doi:10.11861/j.issn.1000-9841.2022.02.0179]
[3]闫伟,马月,谢彦博,等.大豆转化体E8A7027外源T-DNA分析及特异性检测体系建立[J].大豆科学,2023,42(05):579.[doi:10.11861/j.issn.1000-9841.2023.04.0579]
备注/Memo
收稿日期:2020-10-22