[1]喻江,范国权,IKENAGA Makoto,等.侵蚀黑土玉米和大豆根部伴生细菌群落结构分析[J].大豆科学,2021,40(02):232-240.[doi:10.11861/j.issn.1000-9841.2021.02.0232]
 WAN Hui-na,YU Yue-hua,WANG Yi,et al.Bioinformatics and Expression Analysis of GmNAC131 Gene in Soybean[J].Soybean Science,2021,40(02):232-240.[doi:10.11861/j.issn.1000-9841.2021.02.0232]
点击复制

侵蚀黑土玉米和大豆根部伴生细菌群落结构分析

参考文献/References:

[1]康桂娟, 曾日中, 聂智毅, 等. 巴西橡胶树NAC转录因子HbNAC1基因的克隆及生物信息学分析[J]. 中国农学通报, 2012, 28(34): 1-11. (Kang G J, Zeng R Z, Nie Z Y, et al. Cloning and bioinformatics analysis of the gene of NAC transcription factor HbNAC1 in Brazilian rubber tree[J]. Chinese Agricultural Science Bulletin, 2012, 28(34):1-11.) [2]Nuruzzaman M, Manimekalai R, Sharoni A M, et al. Genome-wide analysis of NAC transcription factor family in rice[J]. Gene, 2010, 465(1-2):30-44. [3]Yoshii M, Yamazaki M, Rakwal R, et al. The NAC transcription factor RIM1 of rice is a new regulator of jasmonate signaling[J]. Plant Journal, 2010, 61(5):804-815.[4]Tran L S P, Quach T N, Guttikonda S K, et al. Molecular characterization of stress-inducible GmNAC genes in soybean[J]. Molecular Genetics and Genomics, 2009, 281(6):647-664.[5]Ernst H A, Olsen A N, Skriver K, et al. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors[J]. Embo Reports, 5(2):297-303.[6]Puranik S, Sahu P P, Srivastava P S, et al. NAC proteins: Regulation and role in stress tolerance[J]. Trends in Plant Science, 2012, 17(6):369-381. [7]Nakashima K, Takasaki H, Mizoi J, et al. NAC transcription factors in plant abiotic stress responses[J]. Biochimica et Biophysica Acta Gene Regulatory Mechanisms, 2012, 1819(2):97-103.[8]Schulz P, Romeis H T. Calcium-dependent protein kinases: Hubs in plant stress signaling and development[J]. Plant Physiology, 2013, 163(2):523-530.[9]王永鑫, 刘志薇, 吴致君, 等. 茶树中2个NAC转录因子基因的克隆及温度胁迫的响应[J]. 西北植物学报, 2015, 35(11):14-22.(Wang Y X, Liu Z W, Wu Z J, et al. Cloning of two NAC transcription factor genes in tea plants and response to temperature stress [J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(11): 14-22.)[10]Hu H, Dai M, Yao J, et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proceedings of the National Academy of Sciences, 2006, 103(35):12987-12992.[11]王凤涛, 蔺瑞明, 徐世昌. 小麦3个NAC转录因子基因克隆与功能分析[J]. 基因组学与应用生物学, 2010, 4(6):37-43. (Wang F T, Liu R M, Xu S C. Cloning and functional analysis of three NAC transcription factor genes in wheat [J]. Genomics and Applied Biology, 2010, 4(6): 37-43.)[12]张娟. 基因枪法介导的OsNACl、GAFP和ThpI基因转化小麦的研究[D]. 江苏:扬州大学, 2012. (Zhang J. Study on gene markers-mediated transformation of OsNACl, GAFP and ThpI genes in wheat [D]. Jiangsu: Yangzhou university, 2012.) [13]孙玉燕, 范敏, 何艳军. 西瓜NAC转录因子全基因组鉴定及其对黄瓜绿斑驳花叶病毒的胁迫应答[C]. 青岛:中国园艺学会2018年学术年会, 2018. (Sun Y Y, Fan M, He Y J. Genome-wide identification of watermelon NAC transcription factor and its stress response to cucumber green mottled mosaic virus[C]. Qingdao: The 2018 annual conference of Chinese Society for Horticultural Science, 2018.) [14]李伟, 韩蕾, 钱永强, 等. 植物NAC转录因子的种类、特征及功能[J]. 应用与环境生物学报, 2011, 17(4): 596-606. (Li W, Han L, Qian Y Q, et al.Types, characteristics and functions of plant NAC transcription factors [J]. Chinese Journal of Applied & Environmental Biology, 2011, 17(4): 596-606.)[15]张进艳, 陈芳, 李亮, 等. 水分胁迫下16个玉米NAC转录因子的序列特征和表达分析[J].山西农业科学, 2014, 42(4):307-312. (Zhang J Y, Chen F, Li L, et al. Sequence characteristics and expression analysis of 16 NAC transcription factors in maize under water stress [J]. Journal of Shanxi Agricultural Sciences, 2014, 42(4): 307-312.)[16]Nakashima K, Tran L S P, Nguyen D V, et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice[J]. Plant Journal, 2007, 51(4):617-630.[17]Mao H, Wang H, Liu S, et al. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings[J]. Nature Communications, 2015, 6:8326.[18]Melo B P, Fraga O T, Silva J C F, et al. Revisiting the soybean GmNAC superfamily[J]. Frontiers in Plant Science, 2018, 9: 01864.[19]Hao Y J, Wei W, Song Q X, et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants[J]. Plant Journal, 2011, 68(2): 302-313.[20]Shuo L, Nan W, Dandan J, et al. A GmSIN1/GmNCED3s/GmRbohBs feed-forward loop acts as a signal amplifier that regulates root growth in soybean exposed to salt stress[J]. The Plant Cell, 2019, 31: 2107-2130.[21]Sanjari S, Shirzadian-Khorramabad R, Shobbar Z, et al. Systematic analysis of NAC transcription factors′ gene family and identification of post-flowering drought stress responsive members in sorghum[J]. Plant Cell Reports, 2019.[22]Sun L J, Zhang H J, Li D Y, et al. Functions of rice NAC transcriptional factors, ONAC122 and ONAC131, in defense responses against Magnaporthe grisea[J]. Plant Molecular Biology, 2013, 81(1-2):41-56.[23]黄磊. 水稻NAC转录因子ONAC131、MNAC1和ONAC095在抗病抗逆中的功能研究[D]. 杭州: 浙江大学, 2015. (Huang L. Functional study of NAC transcription factors ONAC131, MNAC1 and ONAC095 in rice against disease resistance [D]. Hangzhou: Zhejiang University, 2015.)[24]王萍, 于月华, 白玉翠,等. 大豆GmNAC23基因的克隆及特征分析[J]. 华北农学报, 2019, 34(1):50-57. (Wang P, Yu Y H, Bai Y C, et al. Cloning and characterization of GmNAC23 gene from soybean [J].Acta Agriculturae Boreali-Sinica, 2019, 34(1):50-57.)[25]倪志勇, 于月华, 陈全家, 等. 大豆GmNAC115基因克隆及特征分析[J]. 大豆科学, 2016, 35(5):754-759. (Ni Z Y, Yu Y H, Chen Q J, et al. Cloning and characterization of soybean GmNAC115 gene [J]. Soybean Science, 2016, 35(5): 754-759.)[26]Meng Q C, Zhang C H, Gai J Y, et al. Molecular cloning, sequence characterization and tissue-specific expression of six NAC-like genes in soybean [Glycine max (L.) Merr.][J]. Journal of Plant Physiology, 2007, 164(8): 1002-1012.[27]He Z, Jinpu J, Liang T, et al. Plant TFDB 2.0: Update and improvement of the comprehensive plant transcription factor database[J]. Nucleic Acids Research, 2011, 39(1): 1114-1117. [28]叶强, 金晓琴, 刘伟娜, 等. 植物蛋白质N-糖基化修饰研究进展[J]. 浙江师范大学学报(自然科学版), 2016, 121(1):86-92. (Ye Q, Jin X Q, Liu W N, et al. Advances in nglycosylation modification of plant proteins [J]. Journal of Zhejiang Normal University (Natural Sciences), 2016, 121(1): 86-92.)[29]王志凤. 小黑杨花芽和叶芽糖基化蛋白质组学研究[D]. 哈尔滨: 东北林业大学, 2014. (Wang Z F. Glycosylated proteomics of small black poplar flower bud and leaf bud [D]. Harbin: Northeast Forestry University, 2014.)[30]王洋, 崔继哲, 周静, 等. 植物表达重组蛋白的N-糖基化研究进展[J]. 中国农学通报, 2005, 21(10): 174-179. (Wang Y, Cui J Z, Zhou J, et al. Advances in N-glycosylation of plant expressed recombinant proteins[J]. Chinese Agricultural Science Bulletin, 2005, 21(10): 174-179.)[31]陈婕妤. 水稻磷酸盐转运体PHT1家族翻译后调控的分子机制研究[D]. 杭州:浙江大学, 2013. (Chen J Y. Molecular mechanism of post-translational regulation of rice phosphate transporter PHT1 family [D]. Hangzhou: Zhejiang University, 2013.)[32]甄艳, 李春映, 陆叶, 等. 植物磷酸化蛋白质组研究进展[J]. 基因组学与应用生物学, 2014, 56(6):245-254. (Zhen Y, Li C Y, Lu Y, et al. Advances in the study of plant phosphorylated proteome [J]. Genomics and Applied Biology, 2014, 56(6): 245-254.)[33]许治永. ATP/GTP结合和磷酸化修饰对于LjCYC蛋白调控百脉根两侧对称花型的发育至关重要[D]. 北京:中国科学院大学; 上海:中国科学院上海生命科学研究院; 上海:植物生理与生态研究所, 2014. (Xu Z Y. ATP/GTP binding and phosphorylation are crucial for the regulation of the development of bilateral symmetrical flower patterns of LjCYC [D]. Beijing: University of Chinese academy of sciences; Shanghai: Shanghai Institutes for Biological Sciences; Shanghai:Science of Plant Physiology and Ecology, 2014.)[34]申玉华, 徐振军, 杨晓坡, 等. 紫花苜蓿NAC转录因子MsNAC1基因的克隆、生物信息学分析及非生物逆境胁迫下的表达分析[J]. 植物遗传资源学报, 2014, 15(6): 1312-1319. (Shen Y H, Xu Z J, Yang X P, et al. Cloning, bioinformatics analysis and expression analysis of NAC transcription factor MsNAC1 gene in alfalfa under abiotic stress [J]. Journal of Plant Genetic Resources, 2014, 15(6): 1312-1319.) [35]Shanaz P, Sudip B, Samsad R, et al. Salinity and drought tolerance conferred by in planta transformation of SNAC1 transcription factor into a high-yielding rice variety of Bangladesh[J]. Acta Physiol Plant, 2015, 37(4): 68.[36]You J, Zong W, Hu H, et al. A SNAC1-regulated protein phosphatase gene OsPP18 modulates drought and oxidative stress tolerance through ABA-independent reactive oxygen species scavenging in rice[J]. Plant Physiology, 2014, 166:2100-2114.[37]Jun Y, Wei Z, Xiaokai L, et al. The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice[J]. Journal of Experimental Botany, 2013, 64(2): 569-583.[38]Nguyen C N, Xuan L T H, Quang T N, et al. Ectopic Expression of Glycine max GmNAC109 enhances drought tolerance and ABA sensitivity in Arabidopsis[J]. Biomolecules, 2019, 9: 714-729.

相似文献/References:

[1]袁鑫,王梦亮,王俊红.一种生物刺激素对大豆根际土壤微生物群落的影响[J].大豆科学,2017,36(05):751.[doi:10.11861/j.issn.1000-9841.2017.05.0751]
 YUAN Xin,WANG Meng-liang,WANG Jun-hong.Effect of A Kind of Biological Stimulant on Microbial Community in Rhizosphere Soil of Soybean[J].Soybean Science,2017,36(02):751.[doi:10.11861/j.issn.1000-9841.2017.05.0751]
[2]接伟光,杨冬莹,姚延轩,等.正茬与迎茬对大豆根际土壤微生物群落组成的影响[J].大豆科学,2022,41(02):179.[doi:10.11861/j.issn.1000-9841.2022.02.0179]
 JIE Wei-guang,YANG Dong-ying,YAO Yan-xuan,et al.Effects of Rotational Cropping and Alternate Cropping on Microbial Communities Composition in the Rhizosphere Soil of Soybean[J].Soybean Science,2022,41(02):179.[doi:10.11861/j.issn.1000-9841.2022.02.0179]
[3]闫伟,马月,谢彦博,等.大豆转化体E8A7027外源T-DNA分析及特异性检测体系建立[J].大豆科学,2023,42(05):579.[doi:10.11861/j.issn.1000-9841.2023.04.0579]

备注/Memo

收稿日期:2020-10-22

基金项目:黑龙江省自然科学基金(D2018008);中国科学院青年创新促进会项目(2019233);哈尔滨商业大学博士科研启动项目(2019DS103)。
第一作者:喻江(1983—),女,博士,讲师,主要从事微生物生态学研究。E-mail:yuj0000@126.com。
通讯作者:于镇华(1984—),女,博士,副研究员,硕导,主要从事土壤微生物生态研究E-mail:yuzhenhua@iga.ac.cn

更新日期/Last Update: 2021-07-20